
Yig, the Father of Serpents: A Real-Time Network Music Performance
Environment

Chad McKinney
University of Sussex, UK

C.Mckinney@sussex.ac.uk

Nick Collins
University of Sussex, UK

N.Collins@sussex.ac.uk

ABSTRACT

Approaches to network music performance are often fo-
cused on creating systems with minimal latency and maxi-
mal synchronicity. In this article we present Yig, the Father
of Serpents, a new program for performing network music
that is designed with these principles in mind, but also of-
fers an argument for a different approach. In Yig, users
may have identical states yet the audio rendering could be
different. In this paper an introduction to the interface is
followed by a brief description of the technical develop-
ment of the software. Next, the instrument is classified and
analyzed using existing frameworks and some philosophy
behind divergence in network music is explained. The ar-
ticle concludes with an numeration of potential software
improvements and suggestions towards future work using
divergence

1. INTRODUCTION

Yig, the Father of Serpents is a new program for creating
and manipulating feedback matrices in real-time over the
internet. The name was chosen as a reference to H.P. Love-
craft’s The Curse of Yig [1] as well as the ancient symbol
of the ouroboros 1 , both as metaphors for feedback and
recursion. The program was created with the philosophy
that performers don’t require identical experiences to have
a successful performance. Research in the field of network
music has historically attempted to create perfect repro-
ductions for performers in separate locations in an attempt
to unite the clients within one absolute and real perfor-
mance [2] [3] [4].

Here instead we have designed a system that, while us-
ing sophisticated techniques for low latency and high lev-
els of synchronicity, embraces divergence in the network’
sonic result. Yig is an Open Sound Control (OSC) client
to the SuperCollider scsynth server utilizing a patch based
visual interface. Synths running on scsynth are displayed
as circular objects, with parameter modulation via object
rotation, and collision created cable creation. Control in-
formation that defines object states is networked using a
server based OSC synchronization system. Stochastic Unit

1 The Ouroboros is a symbol depicting a snake eating its own tail.

Copyright: c©2012 Chad McKinney et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

Generators (UGens) within synth definitions are combined
with input analysis, such as pitch and onset detection, in-
side feedback matrices creating complex dependencies and
chaotic behavior. While the performers’ object states may
be syntactically identical, they can in fact be sonically di-
vergent. This is because of the codependencies of the synths
and the combined minute differences in timing and syn-
chronization. Yig does not try to combat this, but in fact
embraces these differences as a fundamental concept of
network performance.

Performers do not perform with each other, but along side
each other in parallel, yet fundamentally different, experi-
ences. None of the sub-performances in the web of the
network is any more real than the others. The most con-
siderable efforts to ensure an identical reproduction will
never produce true copies. Even if it were possible, the
differences in presentation, venue, sound systems, audi-
ence presence and many other uncountable details creates
a fractured image of the concert with no singular source.

Composing, performing, and improvising in a fractured
ensemble is a unique opportunity for the network ensem-
ble. In 1987, one of the first multi-site performances fea-
tured the pioneer network band the Hub performing in two
spaces simultaneously [5]. This concert presents the six
member ensemble as bifurcated sub ensembles networking
locally. The two trios communicated with each other via a
phone line modem, however only control data was shared.
The ensemble was informationally joined but acoustically
divided.

By allowing some openness into the network, unique per-
spectives can flourish and decisions can have unanticipated
results. Incidental findings have shown Yig to be a vi-
able choice to compose and improvise music for laptop
bands. Yig provides a robust framework for network per-
formances over extremely large distances while preserving
low latencies and high levels of syntactic synchronicity. As
an open source instrument, Yig provides laptop musicians
with the ability to create unique music or to reuse the code-
base for their own projects.

In the next section we describe various features as well
as the development process. This is followed by an anal-
ysis of the system using Andrew Hugill’s internet music
types as well as Thor Magnusson’s epistemic dimension
space. Subsequently, the networking behind Yig is ex-
plained and the concept of divergence in network music is
discussed. Finally, the conclusion establishes several po-
tential improvements for the system and ideas for using
divergence in networks.

mailto:C.Mckinney@sussex.ac.uk
mailto:N.Collins@sussex.ac.uk
http://creativecommons.org/licenses/by/3.0/


2. THE INTERFACE

Yig is an instrument designed for real-time performance.
Because of this, many design decisions seek to streamline
actions necessary to create and manipulate sound while
preserving depth and flexibility. Originally the cable cre-
ation was envisioned to be similar to Max/MSP or Pure
Data where the input and output nodes are connected through
explicit mouse clicks [6] [7]. However, this approach was
abandoned very quickly for something more similar to the
mobile platform version of the ReacTable, which has prox-
imity based connections, for the sake of increased agility
[8]. While there are some similarities to the ReacTable
graphical user interface (GUI), Yig is not just an imitation.
The interface was designed with performance over a net-
work as the main feature.

2.1 Features

Making music with Yig requires four main actions: Synth
creation, synth deletion, cable creation, and cable deletion.
Synth instances are created by dragging items from the
synth menu on to the playing area. Synths are represented
as concentric circles with an animated oscilloscope in the
middle. Each synth has two modulatable parameters, two
audio feedback inputs and one audio feedback output. By
default all synths route audio directly to the main outputs in
addition to the feedback output which allows for complex
chains of non-linear structures.

Synths can be linked together through colliding one synth
over one of the input nodes of another synth. Collision
detection automatically generates an animated cabled con-
nection showing the channel(s) of the connection as well as
the flow of audio, which can be bi-directional. When two
synths are dragged past a predetermined length, the cables
automatically detach. This is similar to the iPhone mobile
app Jasuto, although in Yig only disconnections are prox-
imity based while cables are created during collisions [9].
It is important that cable creation and deletion is easy and
intuitive in order to allow for fast manipulations of the au-
dio connections. Such fast changes in routing is impossible
to reproduce with physical equipment

A server window floats on the bottom of the screen show-
ing the current status of scsynth, including peak and aver-
age cpu usage and the number of running synths. There
are also the recording, connect, and option buttons. When
a user clicks the connect button, given that they have prop-
erly set up the OSCthulhu client, the server window auto-
matically extends itself to include a current list of users on-
line and a chat window is created in the bottom right corner
of the screen. Having built in communication is paramount
to successful network performances. When connected to
the network, other users’ cursors and selected synths are
visible. These visual cues provide additional modes for
communication during a performance.

2.2 GUI Development

Yig is written in C++ with heavy reliance on the Qt frame-
work [10]. Qt was chosen because of its strong cross plat-
form GUI application programming interface (API) which

Figure 1. Screen shot of Yig, the Father of Serpents.

greatly simplifies and streamlines the development process.
Creating Yig Qt was found to be highly flexible because
the API allows for highly encapsulated design. This en-
capsulation was beneficial to our object oriented approach
to GUI programming by allowing the interface between
widgets and GUI elements such as buttons and displays,
to operate in a high level manner, reducing complexity and
increasing robustness.

Qt provided invaluable during development, however the
early decision to use the QGraphicsView and QGraphicsS-
cene paradigm for the creation and manipulation of graph-
ics elements has proven to be a mistake. QGraphicsView
enables incredibly easy implementations of drawable items
with the convenient inclusion of important features such
as mouse and keyboard interfacing and collision detection.
These features made early development much easier, how-
ever the performance of the system is much worse than
anticipated. With only six synth objects, which are very
simple circle graphics, the system idles at 20 percent CPU
usage on a two year old Macbook Pro. When the synths
are moved, triggering redrawing of the items and collision
detection, the CPU can jump dramatically, upwards to 70
percent. We attempted many approaches to increase per-
formance, such as multithreading and pre-caching reusable
graphics items, however the results are still slower than
preferable.

When work began on animation for the oscilloscopes and
cable connections, an OpenGL approach was chosen over
extending the use of QGraphicsView. This proved benefi-
cial, however only the animated graphics currently benefit
from it. In retrospect, OpenGL should have been used for
all of the graphics items, which would have required some
extra programming for the previously mentioned features,
however the results would be a faster interface that takes
advantage of the computer’s GPU, freeing up crucial CPU
processing power for other important tasks such as audio
rendering and networking.

2.3 Synth Definition Development

At its core, Yig is an scsynth client. However, scsynth does
not run as a separate process, but instead, using libscsynth,
operates internally within the same process. This configu-
ration allows for the seamless retrieval of audio buses for
oscilloscope animation, but also serves to maintain a sin-



gular package for distribution. Libscsynth was chosen over
other options, including a custom audio engine, because it
is open source, lightweight, robust, and high quality [11].
However, most importantly, we wanted Yig to be an instru-
ment that allowed for easy extension. The synth def plu-
gin architecture provided by scsynth allows for high level
synth creation by users without the need to recompile the
program. Any user with a working knowledge of Super-
Collider based synthesis can simply modify and extend the
Yig synth def template to create new sounds.

When creating new synths for Yig, some considerations
are helpful. No synth exists in a vacuum, instead the synths
behave differently in varying feedback network configura-
tions. For this reason, it is important to thoroughly explore
the range of sounds before settling on a final version. Of-
ten, unexpected and exciting, or disappointing results can
appear. Also, because Yig is so focused on feedback, loss
of sound can be an issue. It is highly recommended to use
CheckBadValues.ar in most, if not all synths, to prevent
unstable events from destroying a performance. Currently
there is no global tempo synchronization; In some perfor-
mances Demand rate ugens have been used to create se-
quenced rhythm, however you cannot guarantee a shared
downbeat between instances.

3. NETWORKING

The networking for Yig was designed to ensure functional-
ity over long distances while using slow and even intermit-
tent internet connections. To accomplish this, Yig uses low
bandwidth user datagram protocol (UDP) based OSC mes-
sages to ensure high speed transfer. Audio is rendered lo-
cally on each network node’s computer and no audio is di-
rectly networked. Instead the state information, such as the
synth objects and their parameters, is broadcasted across
the network. This approach greatly increases the speed of
the networking while ensuring that variance in the internet
connection does not have a great immediate impact on the
resulting output of the performance. When networking au-
dio directly, if the internet connection is lost for a period of
time or speed drops dramatically, the audio output of the
system is directly and recognizably effected. When net-
working state information these variances will effect the
performance, but in a less direct manner. Instead of audio
jitter or loss, the local state of the machine may begin to
diverge from the network, however the audio fidelity of the
system is not effected and often these events go unnoticed
by audience members and even the performers themselves.

3.1 Synchronization

Because the networking in Yig uses control information in-
stead of audio the issue of synchronicity becomes paramount.
Without any steps taken to address dropped UDP packets,
divergence in the system would steadily increase over time,
rendering the networking completely unreliable. To ad-
dress this issue Yig uses the OSCthulhu server and client
system for OSC synchronization.

OSCthulhu is a new system written by Curtis McKinney
with some work by Chad McKinney that is still undergo-

ing active development but may see an open beta release
in the near future. The benefits of the system are a simple
API and a server based synchronization scheme that allows
developers to bypass many of the issues in synchronization
systems development. OSC messages are sent first to a lo-
cal OSCthulhu client, altering local state information. Next
the client messages the OSCthulhu server directly. Finally,
the server broadcasts the message to the entire network.
Because the server runs on a rented machine on the open
internet, it bypasses many of the problems systems such as
OSCgroups have with routers and firewalls blocking traf-
fic. A synchronization cycle every 1000 milliseconds en-
sures state mirroring across the network so that packet loss
is usually adjusted for within one second.

The networking code in Yig is more similar to a video
game than a typical network performance system. This is
because in OSCthulhu messages are never sent directly to
other players. All traffic passes through the server, and the
server is the fundamental governing body of the ensemble,
similar to the Hub. Objects known as sync args are created
on the server that represent a network entity. This could
be anything from a synth or cable, to a cursor. The entire
ensemble is updated when a set sync arg message is sent
to the server. If a client misses a synchronization cycle,
they will be updated on the next pass, ensuring network
symmetry.

This approach has been tested time and again not only in
OSCthulhu, but in the video game industry as well [12].
When utilizing the API there are some special considera-
tions. Some messages, such as synth creation and deletion
messages in Yig, can cause local volatility if the message
is not received by the server. When using UDP it is im-
portant to assume that if a message is sent, it is likely that
it will not be received at some point. The ramifications of
that can be enormous, but OSCthulhu has a tool to ensure
stability. These messages are sent out before interpretation
so that they update the server first before updating the lo-
cal machine. The local machine will only be updated when
the server sends back a synchronization message. Missed
messages from the server are far less severe than missed
messages to the server.

As an example, consider the deletion of a synth. If the
synth were deleted locally and the message never reached
the server, the ensemble would still have representations
of that synth on their system. At this point the local player
has no way of bringing themselves back into step with the
ensemble without another player serendipitously deleting
it. However, when first sending the server these kinds of
mission critical messages, the problem will always auto-
matically resolve itself. There are three possible outcomes
when sending messages directly to the server before inter-
pretting them locally. First, the server never receives the
message. Second the server receives the message, but the
local client does not receive the synchronization reply. Fi-
nally the server and the client both receive their messages.

Back to the example of the deleted synth. If the deletion
message is never received by the server the synth simply
never changes on the local machine and is still available to
make another deletion attempt. If the message is received



by the server, but the synchronization isn’t received by the
client, the client will simply be updated by the next syn-
chronization cycle. Finally if both messages are received,
functionality is as predicted.

This approach is not always appropriate however. Often
you have objects where speed is more important than accu-
racy. In Yig, setting the value of one of a synth’s parame-
ters will occur locally before the message is sent to the net-
work. This is because the synths are set by mouse control.
This type of gestural information spans several packets and
is therefore more resilient to packet loss. When the synth
is changed, a smooth transition occurs locally and the ges-
ture is preserved. If part of the gesture is dropped on the
way to the server, the whole does not suffer greatly for it.

3.2 Divergence in the Network

Using OSCthulhu synchronization ensures that the state of
Yig is tightly mirrored between network nodes, however
this does not guarantee that the audio output of the system
itself is identical. Small differences in timing can greatly
effect the audio and control feedback chains within Yig, in
turn creating sometimes drastically different results. A re-
alignment from a dropped packet could take longer than a
second with very bad connections. In that time a chaotic
ugen will continue to calculate output using differing states
between the users as well as different audio input from the
feedback chain. There is no opportunity to truly synchro-
nize the audio output of these systems between users. This
prompts us to ask a few questions, though there are no per-
fect answers.

First, why not just network the audio, even given the re-
quirement of high quality network connections? Broad-
band connections will continue to improve, offering net-
work music faster and more stable infrastructure. What
is considered a high quality research connection could be-
come typical for internet users in the future. Perhaps de-
signing systems with faster connections in mind will en-
sure their relevancy and value? However, simply network-
ing audio between nodes may only serve to reinforce tra-
ditional methods of performance.

Networking offers new possibilities for music composi-
tion and performance beyond simply allowing performers
to be further apart during performance or rehearsal. Re-
gardless of the distance, a system like Yig grants a group
of performers the ability to collaborate that simply sending
an audio signal cannot capture. The important part here
is not the network connection itself, but rather the interac-
tions of the group.

It would be possible to design a system where a server
renders audio and sends streams to the performers. How-
ever the audio quality would suffer due to jitter in the net-
work and a loss of internet would absolutely terminate the
performance. In contrast, Yig can operate independently
of the network allowing for continued performance in the
event of connection loss. In the server audio scenario La-
tency would also be an issue because it would restrict the
ability for the performers create fluid gestures and hear im-
mediate results. Furthermore, the network would become
congested, potentially causing control packets to be lost

more often. By using locally rendered audio, the trade off
is that the node renderings might not be identical, but con-
trol is fast and fluid and the network is much more robust.

Why attempt to network naturally divergent systems? Given
that these systems present difficulties for the technology,
why shouldn’t they just be avoided? Where something can
be done musically, often someone will do it; composers
and performers like to experiment, and often like to break
things in the process. Technology should not attempt to re-
strict the direction of aesthetics in music, but rather attempt
to facilitate the needs of musicians.

Is divergence in networking bad? Network music attempts
to create a seamless and invisible framework for the users.
Any noticeable artifact of the system is an irregularity and
steps should be taken to eliminate them. However, this
philosophy fails to capture the truly interesting aspects of
network music, which are the defining features of the en-
tire approach. There is a disconnection between users and
an artificial attempt to traverse it. This could be seen as a
problem, but we prefer to view it as a unique resource.

4. EVALUATION

Figure 2. Comparison of recordings from two
nodes with identical states. Listen at: http://
chadmckinneyaudio.com/SMC2012

4.1 Audio Divergence Test

To demonstrate how easily two nodes with identical states
can diverge, a small case study was arranged using Yig
with two participants, one in Brighton and the other in Lon-
don. Both nodes initialized a recording and created a small

http://chadmckinneyaudio.com/SMC2012
http://chadmckinneyaudio.com/SMC2012


feedback network. Once the synths were connected no fur-
ther changes were made. The recording was allowed to run
untouched for five minutes.

The spectrogram analysis of the two recordings is pro-
vided here in Figure 2. The two recordings show some
clear differences: both recordings have similar harmonic
content, but the punctuations do not align in number or
placement. The second recording is more punctuated and
the harmonics move slightly more than the first. Addition-
ally, the first recording consistently fills the entire spec-
trum while the second has several gaps in the high end of
the range. What is not completely captured in the spec-
trograms is that while the harmonic content and rhythm
differs between the two, the texture of both recordings is
still quite similar.

4.2 Epistemic Dimension Space and Internet Music
Taxonomy

It may be useful to understand Yig within the context of
previous attempts to classify and analyze similar instru-
ments. We have chosen two useful frameworks for this
analysis, Andrew Hugill’s internet music taxonomy [13],
as well as Thor Magnusson’s epistemic dimension space
[14]. Hugill’s taxonomy provides five categories that broadly
define several established approaches to creating music us-
ing the internet.

I. Uses the Network to Connect Physical Spaces or Instruments

II. Created or Performed in Virtual Environments, or Uses Virtual Instruments

III. Translates into Sound Aspects of the Network Itself

IV. Uses the Internet to Enable Collaborative Composition or Performance

V. Delivered via the Internet, with Varying Degrees of User Interactivity

Table 1. Andrew Hugill’s five internet music types.

Music created with Yig falls well into the category of
Music That Is Created or Performed in Virtual Environ-
ments, or Uses Virtual Instruments. Yig provides a single
synchronized environment within which users collaborate
and perform. Given that the categories are broad, an argu-
ment could be made for a classification within Music That
Uses the Network to Connect Physical Spaces or Instru-
ments or Music That Uses the Internet to Enable Collab-
orative Composition or Performance. However, neither of
these account well for the sort of interactions that Yig es-
tablishes through its usage. Yig provides a singular world
within which to perform and does not attempt bridge mul-
tiple distinct locations.

Using Magnusson’s epistemic dimension space, Yig’s char-
acteristics as a performance instrument can be analyzed
and graphed, providing insight as well as an opportunity
for comparisons to other instruments. Parameters are mapped
along 8 axes creating a polygonal field that describes the
overall distribution of specific qualities. Expressive con-
straints, autonomy, music theory, exportability, required
foreknowledge, improvisation, generality, and creative–
simulation continuums are plotted for the software and com-
parisons can be made to other software. Once mapped in
the dimension space, underlying design implications are

expressive constraints

autonomy

music theory

explorability

required knowledge

improvisation

generality

creative-simulation

m
a
n
y

m
uc

h

much

m
uch

m
u
c
h

ea
sy

much

creative

expressive constraints

autonomy

music theory

explorability

required knowledge

improvisation

generality

creative-simulation

m
a
n
y

m
uc

h

much

m
uch

m
u
c
h

ea
sy

much

creative

expressive constraints

autonomy

music theory

explorability

required knowledge

improvisation

generality

creative-simulation

m
a
n
y

m
uc

h

much

m
uch

m
u
c
h

much

expressive constraints

autonomy

music theory

explorability

required knowledge

improvisation

generality

creative-simulation

much

m
u
c
h

ea
sy

much

creative

Jasuto Max/MSP

Reason ReacTable

Figure 3. Jasuto, Max/MSP, Reason, and the ReacTable
plotted in Magnusson’s epistemic dimension space.

expressive constraints

autonomy

music theory

explorability

required knowledge

improvisation

generality

creative-simulation

m
uc

h

much

m
uch

m
u
c
h

ea
sy

much

Yig

Figure 4. Yig in the epistemic dimension space.

revealed as exaggerated contours. Yig is shown to empha-
size the ease of improvisation, while deemphasizing the
required knowledge to play the instrument. The performer
is not required to know any music theory and does not ex-
pect any other special skill beyond the ability to start and
run the networking client correctly.

The instrument allows for high levels of explorability and
autonomy. Creating complex feedback chains affords the
user with many opportunities for detailed experimentation.
However the simplification of the system also serves as an
expressive constraint. There is some allowance for direct
control over the music, but the full dexterity of the human
hand is reduced to a one dimensional rotation.

4.3 Demonstrations and Performances

Yig has benefited from several performances as well as a
demo at the Digital Music Research Network (DMRN) in
2011 at Queen Mary, University of London. The demon-



stration supplied two laptops for the attendees to play over
a local network. This set up provided an opportunity for
the attendees to see the networking in realtime as well as
hear the separate audio for each laptop. The demonstration
ran for over an hour during the poster session, encountering
twelve users, and did not crash or malfunction during the
event. Reactions to Yig by the DMRN participants were
wide ranging from intrigue to confusion. We intend to run
a follow up study to more accurately assess user reactions.

Since the DMRN event at Queen Mary, Yig has seen two
performances with the laptop band Glitch Lich [15]. The
first was at a small noise show in London for a modest
audience. Yig performed well, until the middle section of
the work, when the computer running the local audio for
the performance crashed. However in spite of the crash,
we were able to quickly restart Yig and continue where we
had left off.

After the crash at the noise show, revisions were made
to Yig to prevent further problems. These revisions in-
cluding checking all synths for bad values, using try/catch
blocks in the server buffer fill call, and introducing a few
more read/write locks for insured thread safety. The next
performance was at the 2012 Network Music Festival in
Birmingham and included updated synths as well as an en-
tirely separate visualization program that runs in parallel
to the Yig client. Although rehearsal revealed some is-
sues with the wireless connection for the venue, the day
ended without any crashes or bugs. This is of note as the
group performed from three different locations (Boulder,
Gainesville, and Birmingham) and the performance was
well received.

5. CONCLUSIONS AND FUTURE WORK

Now that the fundamentals of the program have been es-
tablished more work can be done improve upon the current
model. There is much room for efficiency improvements
through multithreading the collision detection as well as
using more advanced OpenGL techniques such as display
lists or virtual buffer objects (VBOs) for the graphics ani-
mation. A system for organizing, traversing, and switching
between scores will be greatly beneficial to organizing re-
hearsals and performances. Beat based synchronization of
demand rate synths will be a useful feature, but will require
more changes to the fundamental synth creation process,
and potentially to the Yig synth def template. Addition-
ally, a formal Human Computer Interaction (HCI) study
on Yig is planned to take place in the autumn which will
provide useful information for further improvements to the
interface. Finally, we intend to release Yig as open source
and freely downloadable under the GNU General Public
License version 3 to coincide with the Sound and Music
Computing conference this year.

Yig demonstrates that divergence within a network can
be embraced, though there is much more to explore for the
concept. The proliferation of small electronic devices pro-
vides fertile territory for further developments, since mo-
bile technology provides massive potential for complicated
networks with asymmetrical configurations. New music
technologies can be made that offer users ways to create

music that is informed by social media and computational
ubiquity. Divergence can be explored in a productive way
to enrich our instruments.

6. REFERENCES

[1] Z.B. Bishop and H.P. Lovecraft, The Curse of Yig.
Arkham House, 1953.

[2] A. Barbosa, “Displaced Soundscapes: A Survey of
Network Systems for Music and Sonic Art Creation,”
Leonardo Music Journal, vol. 13: 53–59, 2003.

[3] G. Weinberg, “Interconnected Musical Networks: To-
ward a Theoretical Framework,” Computer Music
Journal, vol. 29(2): 23–29, 2005.

[4] F. Schroeder, A. B. Renaud, P. Rebelo, and F. Gualda,
“Addressing the Network: Performative Strategies for
Playing Apart,” in Proceedings of the 2007 Interna-
tional Computer Music Conference, 2007, pp. 133–
140.

[5] C. Brown and J. Bischoff, “Indigenous to the
Net: Early Network Music Bands in the San
Francisco Bay Area,” August 2002, available
from: http://crossfade.walkerart.org/brownbischoff/
IndigenoustotheNetPrint.html [Accessed 2 August
2010].

[6] Cycling ’74, “Max/MSP,” 2012, available from: http:
//cycling74.com/ [Accessed 12 May 2012].

[7] M. Puckette and Pure Data Community Developers,
“Pure Data,” 2012, available from: http://puredata.
info/ [Accessed 12 March 2012].

[8] S. Jordà, “The reactable: Tabletop tangible inter-
faces for multithreaded musical performance,” Revista
KEPES, vol. 5(14): 201–223, 2009.

[9] C. Wolfe, “Jasuto,” 2012, available from: http://www.
jasuto.com/site/ [Accessed 26 March 2012].

[10] M. Summerfield, Advanced Qt Programming: Creat-
ing Great Software with C++ and Qt 4. Prentice Hall,
2010.

[11] S. Wilson, D. Cottle, and N. Collins, Eds., The Super-
Collider Book. Cambridge, MA: MIT Press, 2011.

[12] T. Sweeney, “Unreal networking architecture,” 1999,
available from: http://udn.epicgames.com/Three/
NetworkingOverview.html [Accessed 16 May 2010].

[13] A. Hugill, “Internet music: An introduction,” Contem-
porary Music Review, vol. 24(6): 429–437, 2005.

[14] T. Magnusson, “An Epistemic Dimension Space for
Musical Devices,” in Proceedings of the 2010 confer-
ence on New interfaces for musical expression, 2010,
pp. 43–46.

[15] Glitch Lich, “Glitch lich,” 2012, available from: http:
//www.glitchlich.com/ [March 12th 2012].

http://crossfade.walkerart.org/brownbischoff/IndigenoustotheNetPrint.html
http://crossfade.walkerart.org/brownbischoff/IndigenoustotheNetPrint.html
http://cycling74.com/
http://cycling74.com/
http://puredata.info/
http://puredata.info/
http://www.jasuto.com/site/
http://www.jasuto.com/site/
http://udn.epicgames.com/Three/NetworkingOverview.html
http://udn.epicgames.com/Three/NetworkingOverview.html
http://www.glitchlich.com/
http://www.glitchlich.com/

	 1. Introduction
	 2. The Interface
	2.1 Features
	2.2 GUI Development
	2.3 Synth Definition Development

	 3. Networking
	3.1 Synchronization
	3.2 Divergence in the Network

	 4. Evaluation
	4.1 Audio Divergence Test
	4.2 Epistemic Dimension Space and Internet Music Taxonomy
	4.3 Demonstrations and Performances

	 5. Conclusions and Future Work
	 6. References

