
An Interactive 3D Network Music Space

Chad McKinney
University of Sussex, UK

C.Mckinney@sussex.ac.uk

Nick Collins
University of Sussex, UK
N.Collins@sussex.ac.uk

ABSTRACT
In this paper we present Shoggoth, a 3D graphics based
program for performing network music. In Shoggoth, users
utilize video game style controls to navigate and manipulate
a grid of malleable height maps. Sequences can be created
by defining paths through the maps which trigger and mod-
ulate audio playback. With respect to a context of computer
music performance, and specific problems in network mu-
sic, design goals and technical challenges are outlined. The
system is evaluated through established taxonomies for de-
scribing interfaces, followed by an enumeration of the mer-
its of 3D graphics in networked performance. In discussing
proposed improvements to Shoggoth, design suggestions for
other developers and network musicians are drawn out.

Keywords
3D, Generative, Network, Environment

1. INTRODUCTION
Shoggoth is a new network music program for real time
group performance with members distributed over poten-
tially global distances. As a reference to the strange proto-
plasmic beings described in H.P. Lovecraft’s At the Moun-
tains of Madness [16], Shoggoth allows users to reshape
polymorphic terrains to create generative music in collabo-
ration. The program is designed with a user interface that
is both functional and highly visual. The interface design
allows for an aesthetically pleasing presentation that serves
to both enhance communication in the ensemble as well as
offer a clear presentation for the audience. This is important
because performances with physically separated ensembles
present a unique stage presence where parts, and possibly
all, of the group can only be represented through digital
media. The separation in distributed ensembles amplifies
several issues in traditional computer music performance,
such as a lack of correlation between physical effort and
sonic results. Furthermore, distributed ensembles lose fun-
damental components of communication such as visual cues
and gestures.

These issues are not new [4, 36] and there is a growing
range of techniques and technologies which seek to mitigate
or embrace these features of electronic music. Controllers
and interfaces are a popular solution for computer musi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NIME’13, May 27 – 30, 2013, KAIST, Daejeon, Korea.
Copyright remains with the author(s).

cians to reestablish or reimagine the performance charac-
teristics of traditional instrumentalists [25, 28, 38]. These
interfaces lose value in networked performances if members
are in different locations from each other or from an audi-
ence. Concerts in many forms, from experimental computer
music in smaller clubs to popular music stadium shows,
are now commonly performed with accompanying visuals
to augment stage presence [32, 5]. While there may be use-
ful benefits from adding the visual medium, if the presen-
tation isn’t communicative of the non-present performers,
their contributions will be deemphasized or lost entirely.
For this reason network performances are often realized us-
ing video and audio streaming between performance sites
[6, 31, 13]. Latency and quality of connectivity are ever
present concerns, and if performers aren’t using traditional
instruments or physical controllers then the same issues re-
garding computer music performance outlined earlier will
still be present.

This is where virtual spaces can serve a useful role. Net-
worked performances, distributed or not, that are performed
in virtual spaces communicate performers’ efforts while si-
multaneously increasing ensemble communication. Consid-
eration must be given to both usability and presentation
and a balance must be struck to facilitate a successful per-
formance space. Video games are a natural source of inspi-
ration, with their sprawling and detailed worlds, the largest
of which are developed utilizing multi-million dollar budgets
and over a period of several years. Music has been an im-
portant component of video games since the beginning and
game music has become ingrained in our culture. Despite
this, music has usually severed a secondary role, similar to
it’s usage in movies to set the tone of a scene or level. Game
music is commonly adaptive, not interactive, because there
is usually no direct connection between player actions and
changes in the music [8]. Sound effects are the actual in-
teractive components in a game, such as the triggering of a
jump sound based on a button press. There is often some
correlation between game state, such as the adjustment of
tempo according to a game boss’s life.

There is a history of utilizing games or game like worlds
in music and sound art. A common approach has been to
appropriate or modify an existing game for use in a work.
Cory Arcangel’s Nintendo cartridge hacks, including his cel-
ebrated Super Mario Clouds, and Tom Bett’s glitch induc-
ing quake engine modification QQQ are two examples of
how an existing game can be appropriated to produce re-
sults never intended by their designers [8]. Both modify the
source code for a game, fundamentally altering it’s logic,
and creating something new. Not all game appropriations
are as subversive. Rob Hamilton’s work Maps and Legends
[15, 14] built using q3apd [26], a Quake III modification by
Julian Oliver and Steven Pickles, is a network composition
performed in virtual space. Player states such as position



and view angle, and weapon selection, as well as certain
actions such as jumping and firing are mapped using OSC
to control a Pure Data patch [20]. These mappings allow
Hamilton to use the core logic of the Quake engine as the
framework for a networked virtual performance.

In Shoggoth, instead of using an existing game engine, a
new one was written specifically for the purpose of network
music performance. This allowed for the customization of
a system that attempts to find the right balance between
usability, musical control, and visual aesthetics; this paper
serves to document those efforts. In the following section
we detail the system design and philosophy, as well as some
technical aspects of the implementation. Next the system
is categorized using established frameworks with a subse-
quent examination of the role of virtual spaces in music
performance. In conclusion some initial findings are re-
ported along with useful information for other developers
and musicians.

Figure 1: One possible terrain shape in Shoggoth.

2. SYSTEM DESIGN AND DEVELOPMENT
Shoggoth is a network music program, but video games were
a large inspiration for the design. Previous forays into inter-
faces for network music demonstrated increasingly graphi-
cal interfaces, often accompanied by a separate visualization
program. This approach has worked well, although it also
meant that audiences were not presented with the same
visual information as the performers. With Shoggoth we
attempted to create an interface that is aesthetically rich
while functioning as the interface through which the musi-
cians collaborate.

2.1 The Interface
Shoggoth is written in C++ and uses the Cinder framework
[7] for the graphics implementation. On startup the view
comprises of a grid of flat black square islands suspended
in white space. Users can fly around the space by employ-
ing controls similar to a first person shooter (FPS) game,
but there is no gravity or physics. The flat grids are vertex
buffer objects (VBOs) [24] comprising of a triangle mesh
bound with important data such as color and id numbers.
The grids can be manipulated using a selection of number
keys that trigger a morphing animation into various shapes
dependent on one of several generative processes. These
processes are each based on a particular algorithmic model,
enumerated as as (0) Blank, (1) Diamond Square, (2) Cel-
lular Automata, (3) Strange Attractor, (4) L-System, and
(5) Flocking. Each process results in a height map and
a series of intermediate steps are constructed between the
existing mesh and the new version. Using a queued up-
date system the mesh is updated each frame, incrementing
through a thirty step animation list, until the final version

of the mesh is reached. Earlier versions of Shoggoth did not
have animations between meshes and for that reason mesh
transitions were jarring, which inspired the added feature.
Animations not only create smooth changes and striking vi-
sual effects, but also allow for the audio sequencing to follow
the interpolation as well.

A triangle can be selected, using 3D picking [34], from the
grid of a terrain mesh for sequence path creation or manip-
ulation. 3D picking is a technique that allows users to select
something in 3D space using 2D coordinates, usually via a
mouse controlled camera view. 3D picking was implemented
in Shoggoth using a graphics technique whereby the terrain
meshes are rendered at a lower resolution into a frame buffer
object (FBO) [33], which is never shown to the user, and
each triangle in each terrain mesh is colored according to
a global identification system. When a picked triangle is
requested, the color of the pixel in the exact center of the
FBO is selected and then only has to be translated from
an RGBA (reg, green, blue, alpha) value into an unsigned
integer, resulting in the selected triangle’s global identifica-
tion number. This proved to be invaluable as each terrain
contains over 10,000 triangles and previous attempts using
ray casting were unusably slow.

Figure 2: Wireframe render for an island terrain, demon-
strating the triangle mesh and high polygon count.

A path can be created from a sequence of triangle picks,
and once outlined, a read head immediately follows on the
path, triggering and modulating monophonic synth instances.
A triangle in the mesh of an island has two possible states:
black (inactive) or white (active). If the triangle is active
when a read head passes over it, then a coordinating synth
is triggered, resulting in an opening of the envelope gate
and an update to the parameters of the synth according to
the triangle’s height and location in the grid. Triangles are
activated or deactivated according to a similar set of gener-
ative processes as the height map, and are triggered using
the same number keys, but with the shift key pressed as
well.

Player representation and communication are important
in network music performance and Shoggoth has some sim-
ple, but effective, designs to facilitate them. Players are rep-
resented using minimalist tetrahedron models, which aren’t
complicated, but align well with the triangle based theme
of the islands. Position and rotation information is mapped
allowing performers to see not only where each other are,
but what they’re looking at, and the immediate results of
their actions. This is an upgrade from the authors’ pre-
vious systems where either no representation was made or
only position data was represented. A chat system has been
created to allow for communication, both with the other
performers and the audience, and uses a multi-player game
style 2D overlay.



Figure 3: Multiple terrains with sequences.

2.2 Sound Design
Sound in Shoggoth is implemented using the SuperCollider
[37] libscsynth library in conjunction with libsc++ [22] to
create an internal several built natively into the C++ ap-
plication. Because the server is built internally, no external
messaging are necessary, and all communication with the
scsynth server and Shoggoth occur through native function
calls. Shoggoth will fail completely without any hanging
servers in the event of a crash, where as if the server were
running on the local machine this would not be the case.
Maintaining independence of the sound server, language,
and now the IDE is a favorable characteristic of SuperCol-
lider as an audio language. That level of independence is not
favorable when distributing a program to users who may not
be knowledgeable about the subtleties involved with multi-
ple processes.

Synth design in Shoggoth is focused on the usage of wave
terrain synthesis [29]. Each synth definition utilizes at least
one wave terrain oscillator that reads a buffer filled with
the same 2D height map that defines the shape of the ter-
rain that the synth’s sequence resides on. This is a essential
feature because it allows the terrains to effect not just the
sequential triggering of synth instances or the modulation
of synth parameters, but also to define the most funda-
mental components of the synths’ timbre. Each generative
process, such as the cellular automata, have a character-
istic harmonic palette that forges a strong connection be-
tween the visuals and the sound. Furthermore, when the
island meshes morph into new forms, the animation effects
not only the visuals display, but also updates any running
synths as well, creating a dramatic timbral shift.

Synths definitions must be written and edited in Super-
Collider which does create dependancy for development,
as the version of SuperCollider that the synth definitions
are compiled in must be the same that Shoggoth has been

built against. This might change given development in the
libsc++ library that could allow for native or scripted syn-
thdef compilation. Even given this dependancy, SuperCol-
lider is an excellent choice for sound design because it has
an established code base with years of active development
and supplies a well defined and terse interface for synthesis.
Shoggoth can be used to create a wide range of sonic out-
put, but given the looping sequential infrastructure and the
often aggressive waveforms produced by the wave terrain
synthesis, rhythmic noise is the most natural end result.
While this style of music may not appeal to all, generative
and networked music audiences are often interested in more
experimental music.

2.3 Networking
Open Sound Control [39] messaging is the back bone for
the networking in Shoggoth. The core networking interface
is implemented using OSCpack [27] to create and receive
OSC packets. Additionally, Shoggoth uses the OSCthulhu
[23] server and client framework because direct peer to peer
networking can cause a multitude of issues stemming from
packet loss. OSCthulhu uses a multi-player video game style
synchronization scheme which is ideal for a program such as
Shoggoth that defines networking not as a sequence of mes-
sages, but instead as a collection of states that are updated
across the network. To implement networking using OS-
Cthulhu, sync objects are created on the server, each with
any number of sync arguments. When an object needs to be
updated a message is sent from the local client to the OSC-
thulhu server, which updates itself and immediately updates
all the other clients in the network. Additionally the server
has a regular update cycle that updates all of the clients to
the current world state. Because of this server based syn-
chronization lost packets are quickly recovered from and the
network is continuously realigned.



In Shoggoth there are eight types of information net-
worked: Player position, player orientation, terrain height
maps, terrain step grids, sequence positions, sequence sizes,
synth selections for sequences, and chat. This group con-
tains a wide variety of data from character strings to high
volume meshes. The terrain meshes proved to be the most
challenging to network initially. Synchronizing 10,000 trian-
gles with 3 points each as well as the step grid was daunting,
inspiring odd attempts to reduce bandwidth such as using
LZMA compression [30]. The solution we found was elegant,
but limiting. Instead of manually synchronizing each trian-
gle, instead the settings and random seed used to generate a
given terrain mesh and step map were synchronized, allow-
ing for an incredibly small amount of information to guar-
antee state across the network. The drawback is that we
had to remove manual deformation of the terrains, leaving
only the generative processes able to create and manipulate
the islands. This changed the nature of the performance
from guided intentionality to fast experimentation, but the
reduction in bandwidth was extremely beneficial.

Player position and orientation were easy enough to net-
work, but using seven arguments per user to define them (3
for position, 4 for quaternion defined rotation) sometimes
generated asynchronous updates for their individual compo-
nents and unnecessary traffic. This problem led to the use of
bitpacking to package updates together. Using bitpacking
the X/Y/Z components of the position of a player can be
packed into a single integer value, as well as the W/X/Y/Z
components of their rotation, reducing traffic while simul-
taneously enforcing unified updates. The same technique
was used with the aforementioned island states. All the
settings including the process number and random seed are
packed into a single integer so that there is a guaranteed suc-
cess or failure of an update. This prevents scenarios where
only a portion of the information needed to update an is-
land is received, while the others might be lost, resulting
in an incorrect state. Because of these efforts, Shoggoth’s
networking is precise and fast despite the large amount of
information represented on screen and even while using low
quality wireless connections.

3. TAXONOMY AND EVALUATION
Placing network music systems within the framework of
existing taxonomies is useful for analysis and comparison.
We have chosen three frameworks for this assessment, An-
drew Hugill’s internet music taxonomy [17], Golo Föllmer’s
twelves types of net music [12] and Thor Magnusson’s epis-
temic dimension space [21]. Beginning with Hugill’s In-
ternet music taxonomy, Shoggoth sits well in the second
category of music that is Created or Performed in Virtual
Environments, or Uses Virtual Instruments. Convincing ar-
guments could be made that Shoggoth also facilitates mu-
sic that Uses the Internet to Enable Collaborative Composi-
tion or Performance, but the defining features of Shoggoth
align more closely with most of the pieces that could fit into
Hugill’s second category than his fourth.

Föllmer’s taxonomy is much more complicated than Hugill’s
and requires more consideration. There are many similari-
ties between Shoggoth and Föllmer’s description of the Al-
gorithmic Installations type, but the emphasis on an instal-
lation as opposed to performance does not afford an easy fit.
With that consideration, the Performance cluster, number
5, is the most natural, leaving a choice between Network
Performances and Staged Projects types. Shoggoth makes
no use of librettos or text and therefore Staged Projects
makes little sense, leaving type K Network Performances
in cluster V. Performance.

Figure 4: Föllmer’s Spatial order of the twelve types
of Net music (A–L) in relationship to the three dimen-
sions “interplay with network characteristics”, “interactiv-
ity/openness”and “complexity/flexibility”, scaled from 1 to
5. Types are rated on the basis of averaged ratings of single
projects. In mapping the types, the clusters I–V are formed.

expressive constraints

autonomy

music theory

explorability

required knowledge

improvisation

generality

creative-simulation

m
a
n
y

m
uc

h

much

m
uch

m
u
c
h

ea
sy

much

creative

expressive constraints

autonomy

music theory

explorability

required knowledge

improvisation

generality

creative-simulation

m
a
n
y

m
uc

h

much

m
uch

m
u
c
h

ea
sy

much

creative

expressive constraints

autonomy

music theory

explorability

required knowledge

improvisation

generality

creative-simulation

m
a
n
y

m
uc

h

much

m
uch

m
u
c
h

much

expressive constraints

autonomy

music theory

explorability

required knowledge

improvisation

generality

creative-simulation

much

m
u
c
h

ea
sy

much

creative

Jasuto Max/MSP

Reason ReacTable

Figure 5: Jasuto, Max/MSP, Reason, and the ReacTable
plotted in Magnusson’s epistemic dimension space.

Magnusson’s epistemic dimension space is not network
music specific, but it is a useful to for analyzing and compar-
ing musical interfaces. Eight parameters are spread across a
2D plane allowing for a mapping of the epistemic qualities of
an interface. The interesting shapes produced, while some-
what arbitrary, do afford a fast comparison between mul-
tiple interfaces, and a quick glance reveals that Shoggoth
is most similar to the ReacTable [19], of the list provided.
While Shoggoth is marked as having more autonomy than
the ReacTable (because of the extended use of generative
processes), they both impose significant constraints on ex-
pression, while lacking generality and inherent music theory
constructs. Instead, both the ReacTable and Shoggth em-
phasize improvisation in a creative and unique interface. In
contrast, Reason contain more music theory infrastructure,
and Max/MSP has more depth of explorability.

On February 24th, 2013, Shoggoth was premiered at the
Network Music Festival in Birminghan, UK [1]. Network
bandwidth over the wireless internet connection was discov-
ered to be an issue during sound check and for the perfor-
mance networking of the player avatars had to be removed.
It was also discovered that the first person camera controls



expressive constraints

autonomy

music theory

explorability

required knowledge

improvisation

generality

creative-simulation

m
uch

much

m
uch

m
u

ch

easy

much

Shoggoth

Figure 6: Shoggoth in the epistemic dimension space.

did not work correctly with a projector connected to the
system, which restricted the movemen in the virtual space.
Both problems have been subsequently corrected. The per-
formance well received by the audience, with informal com-
ments rating it highly in the festival.

4. PERFORMANCE IN VIRTUAL SPACE
Video game culture provides a useful reference for digi-
tal spectator events. The youngest generations have been
raised in an era of video games and the internet, giving rise
to online E-Sports such as Star Craft and League of Legends
[35, 18]. These games are not just for bragging rights and
the winners stand to win hundreds of thousands of dollars
in front of thousands of fans [3]. Virtual music [11] perfor-
mances have not yet reached this level of acceptance, but
the concept has been proven that there is a potentially large
audience for virtual performance.

There are many similarities between an online battle and
an online musical performance (perhaps even an online mu-
sic battle). The two are often group events and the depiction
of embodiment is important to spectators. But where games
have concrete goals and rules that dictate their achievement,
musical performances have compositions and improvisations
with a wide range of constraints and goal orientation. There
are other considerations, such as the embodiment of the per-
formers and their portrayal, or lack thereof, of physical and
emotional state. These have an important role in how a
performance is perceived by an audience, and by the per-
formers themselves [9]. If virtual music performances are to
attain the popularity of virtual sports, more work will need
to be put into the systems and infrastructure that supports
those performances.

Online games such as Star Craft have budgets that rival
hollywood movies, but more importantly there is a depth
to the software that is simply missing in network music sys-
tems. For example the players in Shoggoth are represented
as simple tetrahedron with only position and rotation as
defining features. Characters in a video game on the other
hand can have hundreds of animations. The amount of de-
tail in the textures, meshes, lighting, and shading in a large
game dwarfs the efforts of even the most ambitious network
musician. Important steps can be taken to improve the
situation, such as the development of open and abstracted
tools sets to reduce duplicated work and the adoption of new

skills such as modeling and animation. Perhaps the most
useful step is to consider how some independent developers
manage to compete against even the largest games despite
tiny budgets and thin development teams. Games such as
Minecraft [10] attract massive audiences despite these issues
because they use resources wisely, often employing minimal-
ist or generative techniques, and create sophisticated and
stylized game and art designs that don’t require large re-
sources.

5. REFLECTIONS ON DEVELOPMENT
After months of work, and many challenges along the way,
Shoggoth has reached an initial release and is performance
ready. The program is fairly stable and a recent feature lock
down means that future development will be concerned with
bug fixing and system efficiency. Other network musicians
or software designers will benefit from learning about a few
of the challenges throughout Shoggoth’s development.

An important consideration is when to write a completely
new engine from scratch or in contrast, recognizing when
an existing engine is a viable option. Writing a new en-
gine should not be considered lightly, and indeed the vast
majority of the time spent developing Shoggoth was put
into building basic functionality such as FPS style camera
controls, mesh generation, and a chat system. The Quake
III engine mentioned earlier, or something similar such as
Ogre 3D [2], will already have this kind of functionality
built in, and will greatly reduce your development time.
Only if something requires a unique feature (in the case of
Shoggoth, the polymorphic terrains) should engine develop-
ment be considered. Furthermore, if the decision is made
to write an engine, the creation of an abstracted framework
or library will benefit subsequent development. Shoggoth is
written without such abstractions and for this reason much
of the code base is not easily portable to other projects. For
that reason, this development cycle inspired the creation of
an engine with many of the basic functions underneath a
network music program like Shoggoth implemented using a
clean and abstracted interface.

Another large problem facing development was a lack of
focus during some periods of design. Experimentation is a
useful technique in music software design, but some amount
of planning will minimize lost time. For example, in Shog-
goth the fundamental way in which performers used the
the interface was not clearly defined until well into devel-
opment, resulting in several abandoned efforts and wasted
time. From a musical perspective, a lack of focus is also
problematic because it creates a moving target for sound
design, stunting the growth of the system’s musical iden-
tity. Finally, allowing other musicians an opportunity to
use and evaluate the project starting early in the process
will help identifying problems not just with the code base,
but also the design and vision of the project. For Shoggoth,
that external assessment was not introduced early enough
in the process, leading to some of the issues mentioned ear-
lier. Moving forward the main concern is to perform with
the interface, find and fix problems in the system, and to
streamline the project where possible. Further features and
a potential user study will follow the initial performances.

6. CONCLUSIONS
In this paper we have presented Shoggoth, a new interactive
system for performing networked generative music within a
3D space. We began first by discussing some of the unique
problems that network music performances face, especially
with regards to distributed ensembles. Next, the techni-
cal implementation of graphics, audio and networking was



discussed and Shoggoth examined with respect to three es-
tablished taxonomies, and associated contextual considera-
tions. Finally, we concluded with some reflections on the
relationship of gaming and virtual music making, and sug-
gestions for other developers who may be interested in some
lessons for their own network music software design.

7. REFERENCES
[1] Network music festival, 2013. Information available

at: http://networkmusicfestival.org/ [Accessed
February 8, 2013].

[2] Ogre 3d, 2013. Available from:
http://www.ogre3d.org/ [Accessed February 11 2013].

[3] W. Benedetti. Taipei assassins triumph in ’league of
legends’ world finals, 2012. Available from:
http://www.nbcnews.com/technology/ingame/
taipei-assassins-triumph-league-legends-

world-finals-1C6448579 [Accessed 8 Feb 2013].

[4] L. Berio and R. Dalmonte. Intervista sulla musica.
Laterza, 2007.

[5] K. Brougher, J. Zilczer, C. Museum of Contemporary
Art (Los Angeles, H. Museum, and S. Garden. Visual
music: synaesthesia in art and music since 1900.
Thames & Hudson, 2005.

[6] C. Chafe, S. Wilson, A. Leistikow, D. Chisholm, and
G. Scavone. A simplified approach to high quality
music and sound over ip. In In Proceedings of the
COST G-6 Conference on Digital Audio Effects
(DAFX-00, pages 159–164, 2000.

[7] Cinder Community. Cinder, 2013. Available from:
http://libcinder.org/ [Accessed 8 Feb 2013].

[8] K. Collins. Game Sound: An Introduction to the
History, Theory, and Practice of Video Game Music
and Sound Design. Mit Press, 2008.

[9] D. Deutsch. The Psychology of Music. Elsevier
Science, 2012.

[10] N. Development, 2013. Available from:
https://minecraft.net/ [Accessed 11 February
2013].

[11] W. Duckworth. Virtual Music: How the Web Got
Wired for Sound. Taylor & Francis, 2013.

[12] G. Föllmer. Electronic, Aesthetic and Social Factors
in Net music. Org. Sound, 10(3):185–192, Dec. 2005.

[13] S. Gresham-Lancaster. Is there no there there? video
conferencing software as a performance medium. In
Music in the Global Village Conference, 2007.

[14] R. Hamilton. Maps and legends: Designing fps-based
interfaces for multi-user composition, improvisation
and immersive performance. In
R. Kronland-Martinet, S. Ystad, and K. Jensen,
editors, Computer Music Modeling and Retrieval.
Sense of Sounds, 4th International Symposium,
CMMR 2007, Copenhagen, Denmark, August 27-31,
2007. Revised Papers, volume 4969 of Lecture Notes
in Computer Science, pages 478–486. Springer, 2007.

[15] R. Hamilton. Maps and legends: Fps-based interfaces
for composition and immersive performance. In
Proceedings of the 2012 International Computer
Music Conference, pages 344–347, 2007.

[16] H.P. Lovecraft. At The Mountains of Madness.
Arkham House, 1931.

[17] A. Hugill. Internet music: An introduction.
Contemporary Music Review, 24(6): 429–437, 2005.

[18] D. Jin. Korea’s Online Gaming Empire. Mit Press,
2010.

[19] S. Jordà. The reactable: Tabletop tangible interfaces

for multithreaded musical performance. Revista
KEPES, 5(14): 201–223, 2009.

[20] M. Puckette and Pure Data Community Developers.
Pure Data, 2012. Available from:
http://puredata.info/ [Accessed 12 March 2012].

[21] T. Magnusson. An Epistemic Dimension Space for
Musical Devices. In Proceedings of the 2010
conference on New interfaces for musical expression,
pages 43–46, 2010.

[22] C. McKinney. libsc++, 2013. Available from:
https://github.com/ChadMcKinney/libscpp
[Accessed 8 Feb 2013].

[23] C. McKinney and C. McKinney. Oscthulhu: Applying
video game state based synchronization to network
computer music, 2012.

[24] T. McReynolds and D. Blythe. Advanced Graphics
Programming Using OpenGL. The Morgan Kaufmann
Series in Computer Graphics. Elsevier Science, 2005.

[25] J. M. Morris. Structure in the Dimension of Liveness
and Mediation. Leonardo Music Journal, pages 59–61,
2008.

[26] J. Oliver and S. Pickles. qa3pd, 2002. Available at
http://julianoliver.com/q3apd/[Accessed 8 Feb
2013].

[27] oscpack, 2013. Available from:
http://www.audiomulch.com/~rossb/code/oscpack/
[Accessed 8 Feb 2013].

[28] P. Rebelo. Haptic sensation and instrumental
transgression. Contemporary Music Review,
25(1-2):27–35, 2006.

[29] C. Roads. The Computer Music Tutorial. Mit Press,
1996.

[30] D. Salomon. Data Compression: The Complete
Reference. Molecular biology intelligence unit.
Springer-Verlag London Limited, 2006.

[31] A. A. Sawchuk, E. Chew, R. Zimmermann,
C. Papadopoulos, and C. Kyriakakis. From remote
media immersion to distributed immersive
performance. In Proceedings of the 2003 ACM
SIGMM workshop on Experiential telepresence, ETP
’03, pages 110–120, New York, NY, USA, 2003. ACM.

[32] J. Sexton. Music, Sound and Multimedia: From the
Live to the Virtual. Music and the Moving Image
Series. Edinburgh University Press, 2007.

[33] D. Shreiner and B. Group. The Framebuffer. OpenGL
Series. Pearson Education, 2009.

[34] D. Shreiner and B. Group. OpenGL Programming
Guide: The Official Guide to Learning OpenGL,
Versions 3.0 and 3.1. OpenGL Series. Pearson
Education, 2009.

[35] T. Taylor. Raising the Stakes: E-Sports and the
Professionalization of Computer Gaming. Mit Press,
2012.

[36] D. Wessel and M. Wright. Problems and prospects for
intimate musical control of computers. Computer
Music Journal, 26(3):11–22, Sept. 2002.

[37] S. Wilson, D. Cottle, and N. Collins, editors. The
SuperCollider Book. MIT Press, Cambridge, MA,
2011.

[38] J. Wilson-Bokowiec and M. A. Bokowiec. Kinaesonics:
The intertwining relationship of body and sound.
Contemporary Music Review, 25(1-2):46 –57, 2006.

[39] M. Wright, 2002. Open sound control 1.0
specification. Available from:
http://opensoundcontrol.org/spec-1_0 [Accessed 2
May 2010].


