
_308 _309

performances implementing a Network Sourced Approach
(NSA) proliferate. These performances may cross
geographical borderlines, musical genre categorisations,
cultural boundaries and perhaps even more interestingly,
musical and social subdivisions.

5. ACKNOWLEDGEMENTS
The research undertaken for this paper was completed at
CIT, Cork School of Music within a thesis submitted by the
author in partial requirement for an MSc in Music and
Technology. This conference paper was prepared by the
author while pursuing a PhD in Sonic Arts at SARC, Queens
University Belfast.

6. REFERENCES

[1] Barney, D. (2004) - ‘The Network Society’ - Polity Press Ltd -
2004.

[2] Caceres, J.-P. and Chafe, C. (2009) - ‘JackTrip: Under the
hood of an engine for network audio’, in Proceedings of
International Computer Music Conference, Montreal, 2009.

[3] Carot, A. (2009) - ‘Musical Telepresence - A Comprehensive
Analysis Towards New Cognitive and Technical Approaches’.
(PhD. Dissertation, Institute of Telematics, Lubeck, Germany,
2009)

[4] Carot, A., and Werner, C., (2007) - ‘Network music
performance – problems, approaches and perspectives.’ In
Proceedings of the “Music in the Global Village”’-
Conference, Budapest,Hungary, September 2007.

[5] Castells, M. (2000) - ‘Materials for an Exploratory Theory of
The Network Society’ - British Journal of Sociology Vol. No.
51 Issue No. 1 (January/March 2000) pp. 5-24, 2000

[6] Chafe, C., Wilson, S., Leistikow, R., Chisholm, D., Scavone,
G. (2000) - ‘Simplified Approach to High Quality Music and
Sound over IP’, in Proceedings of the Digital Audio Effects
(DAFX) Conference (2000) pp. 159–164.

[7] Chew, E., Zimmermann, R., Sawchuk, A., Papadopoulos, C.,
Kyriakakis, C., Francois, A. R. J., Kim, G., and Volk, A.
(2004) - ‘Musical interaction at a distance: Distributed
immersive performance’. In 4th Open Workshop of
MUSICNETWORK, 2004.

[8] S. Gresham-Lancaster, “The Aesthetics and His- tory of the
Hub: The Effects of Changing Technology on Network
Computer Music,” Leonardo Music Journal 8 (1998) pp. 39–
44.

[9] Gu, X., Dick, M., Kurtisi, Z., Noyer, U. and Wolf, L. (2005) -
‘Network-centric music performance: Practice and
experiments.’ IEEE Communications, 43:86–93, 2005.

[10] Hajdu, G. (2003) - ‘Quintet.net – A Quintet on the Internet’,
Proceedings of the International Computer Music Conference,
Singapore, 2003

[11] Kleimola, J. (2006) - ‘Latency Issues in Distributed Musical
Performance’, Telecommunication Software and Multimedia
Laboratory Seminar, Helsinki, Finland, (2006).

[12] Lazzaro, J.; Wawrzynek, J. (2001) - ‘A Case for Network
Musical Performance’, The 11th International Workshop on
Network and Operating Systems Support for Digital Audio
and Video (NOSSDAV 2001), New York. USA.

[13] Oliveros, P. (2009) - ‘From Telephone to High Speed Internet:
A brief History of My Tele-Musical Performances’, Leonardo
Music Journal Online Supplement to LMJ 19, 2009.

[14] Rebelo, P., Schroeder, F. & Renaud, A. B. (2008). Network
dramaturgy: Being on the node. Paper at the International
Computer Music Conference, 2008

[15] Renaud, A. (2009) - ‘The Network as a Performance Space’.
(PhD. Dissertation, School of Music and Sonic Arts, Queen’s
University Belfast, 2009)

[16] Renaud, A. B., Carot, A., and Rebelo, P. (2007) - ‘Networked
music performance: State of the art’, in Proceedings of the
AES 30th International Conference, Saariselka, Finland, 2007.

[17] Tanaka, A. (2001) - ‘Musical implications of media and
network infrastructures’. Hypertextes Hypermédias, Hermes
Science Publications, Paris. 2001, 241-250.

[18] Tanaka, A. (2003) - ‘Seeking interaction, changing space’, In
Proceedings of the 6th International Art + Communication
Festival, Riga, Latvia, 2003.

[19] Tanzi, D. (2003) - ‘Musical Experience and On-line
Communication’. Crossings: eJournal of Art and Technology,
University of Dublin, Trinity College, December 2003.

[20] Tanzi, D. (2005) - ‘Musical objects and digital domains’.
Proceedings of EMS-05 Conference. Montreal, Quebec,
October 19-22, 2005.

[21] Tanzi, D. (2005) - ‘Musical Thought Networked’, Laboratorio
di Informatica Musicale, Dipartimento di informatica e
Comunicazione, Universita degli Studi di Milano. 2005.

[22] Weinberg, G. (2002) - ‘The Aesthetics, History and Future
Challenges of Interconnected Music Networks’ - MIT Media
Laboratory, ICMC 2002, Goteburg, Sweden pp349-356, 2002.

[23] Novak, M. (1997) - ‘Trans Terra Form: Liquid Architectures
and the Loss of Inscription.’ 1997.

[24] Vitale, C. (2010) - ‘Networkologies - A Manifesto - Section I’
- Speculations Online Journal 1: pp 153-184: 2010.

[25] Kim-Boyle, D. (2008) - ‘Network Music’s - Play, Engagement
and the Democratization of Performance’. In Proceedings of
New Interfaces for Musical Expression Conference, (Genova,
Italy, June 4-8, 2008)

[26] Bannier, S. (2009) - ‘The Musical Network 2.0 & 3.0”,
Studies on Media Information & Telecommunication’, in
Interdisciplinary Institute for Broadband Technology,
Brussels, Belgium, 2009.

[27] Lee, R (2005) - ‘Bauman, Liquid Modernity And Dilemmas
Of Development’ in Thesis Eleven: 83:1, pp. 61-77, 2005.

OSCTHULHU: APPLYING VIDEO GAME STATE-BASED
SYNCHRONIZATION TO NETWORK COMPUTER MUSIC

Curtis McKinney

Bournemouth University
Creative Technology Research Group
cmckinney@bournemouth.ac.uk

Chad McKinney

University of Sussex
Department of Informatics

C.Mckinney@sussex.ac.uk

ABSTRACT

In this paper we present a new control-data synchroniza-
tion system for real-time network music performance named
OSCthulhu. This system is inspired by the networking
mechanics found in multiplayer video games which rep-
resent data as a state that may be synchronized across sev-
eral clients using a hub-based server. This paper demon-
strates how previous musical networking systems predi-
cated upon UDP transmission are unreliable on the open
internet. Although UDP is preferable to TCP for trans-
mitting musical gestures, we will show that it is not suf-
ficient for transmitting control data reliably across con-
sumer grade networks.

This paper also exhibits that state-synchronization tech-
niques developed for multiplayer video games are aptly
suited for network music environments. To illustrate this,
a test was conducted that establishes the difference in di-
vergence between two nodes using OscGroups, a popu-
lar networking application, versus two nodes using OS-
Cthulhu over a three minute time-span. The test results
conclude that OSCthulhu is 31% less divergent than Os-
cGroups, with an average of 2% divergence. This paper
concludes with a review of future work to be conducted.

1. INTRODUCTION

Computer network music has benefitted from three decades
of development, including the experiments of the San Fran-
cisco Bay Area network band pioneers, the introduction
of the OSC protocol [22], and research into streaming and
latency issues. Making an infrastructure suitable for net-
work performance in the face of highly distributed partic-
ipants and online security roadblocks remains a challeng-
ing task, and one which this paper confronts. Our solu-
tion, OSCthulu, is a client-server architecture which has
proven robust in concert performance, and as open-source
software may be of benefit to other researchers and per-
formers. This system has been researched and developed
by the authors with real-world testing conducted by their
network music band Glitch Lich [9].

As noted in Indigenous to the Net, the world’s first
network computer band, the League of Automatic Music
Composers, began as an extension of the home brew cir-
cuit tinkering that was characteristic of the Bay Area in the
mid-1970’s. Their computers, MOS Technology KIM-1

models, were modest with only 1 kilobyte of memory and
could only be programmed using assembly language. The
League of Automatic Music Composers created interac-
tive programs by directly soldering connections between
computers and writing programs which would listen and
transmit data on these lines. The network was fragile and
error prone. It was also difficult to set up as all the connec-
tions had to be re-soldered each time the band rehearsed
[3].

In what can be seen as a natural evolution of the tech-
nology, the spiritual successor to the League of Automatic
Music Composers, the Hub, utilized a server-based sys-
tem. This system provided a standardized interface for
connections between members with varying computer mod-
els, as well as shared memory for the ensemble. Through-
out this time many other approaches to networking were
being developed. Previous efforts mentioned focused on
the real-time interactions of the performers’ computers,
but in the 1990’s several new methods explored non-real-
time connections. Systems such as the ResRocket Surfer
and Faust Music Online (FMOL) allowed users to collab-
orate writing music by providing an online repository [12]
[11].

Much research has been done towards investigating
the issues that latency presents to instrumentalists when
streaming audio as well as strategies to cope with this la-
tency in performance [1]. Often solutions favor research
grade connections between sites, providing lower latency,
although these types of connections are not widely avail-
able to the public [20] [14]. Several alternative approaches
have been taken to address network latency such as mak-
ing the latency a multiple of a preset tempo, as with NIN-
JAM [4]. Local delay offsets are used in the eJAMMING
software to produce the same latency of actual audio out-
put between all users, attempting to bring the synchronic-
ity of the users closer [7].

Recent developments in music programming languages
such as SuperCollider and ChucK have led to new and
exciting systems focused on code sharing in live coding
ensembles. Systems such as Co-Audicle and Republic
create networks in which performers can share code that
will be altered, executed and re-entered into the pool [19]
[18]. Live coding is a fundamentally computer-based per-
formance style and for that reason lends itself well to net-
working. The information being transferred is small, yet

_310 _311

can produce long-lasting results and the time specific pa-
rameters for execution are much less restrictive than in a
traditional performance. The practice leads to organic in-
terdependencies and produces layers of uncertainty which
afford unexplored modes of performance, composition,
and listening [6] .

Currently groups like the Hub, PLOrk, Powerbooks
Unplugged and many others favor the Open Sound Con-
trol (OSC) protocol for networking data between nodes.
OSC is a flexible protocol that is geared towards commu-
nication between musical systems. OSC provides a dy-
namic and powerful framework with high resolution data
which is usable on local networks and across the internet
[22]. In surveying the current solutions we feel that there
is room for an alternative solution for networking compo-
sitions and performances, which implements techniques
established by multiplayer video games.

2. OSCTHULHU 1.0

Work on a new OSC-based platform for networking col-
laborative electronic music began in June 2010. The project,
named OSCthulhu, was inspired by the program OSC-
groups created by Ross Bencina, which enables users to
share OSC messages with each other over a network [2].
OSCgroups accomplishes this by creating a central ren-
dezvous server that uses Network Address Translation (NAT)
hole-punching techniques to enable individual users to by-
pass firewall and router restrictions normally placed on
peer-to-peer communications.

2.1. Nat Hole-Punching and UDP multicasting

Normally, a router will block any message that is received
unless a previous message has been sent out by the user
to that specific IP address and port. This is done to pre-
vent nefarious traffic from reaching the user’s private net-
work and computer. Furthermore, the IP address and port
of an application behind a user’s router is obfuscated by
Network Address Translation (NAT), a system utilized by
routers to preserve IP address real estate on the open inter-
net (largely addressed by the upgrade from Ipv4 to Ipv6)
[10]. The server works around this by noting the private
and public IP Address and port pairs, known as an end-
point, of each user that logs into a group. The server
distributes this information to everyone within the group,
at which point all of the users then asynchronously send
messages to all of the public and private endpoints that
it has received from the server. The first messages re-
ceived at either end will be discarded by their respective
routers as they have not been met with a matching out-
going message. However, now the user has punched a
hole in their firewall by sending an outgoing message to
each of the recorded endpoints. Now when the user re-
ceives messages at their endpoint, be it from any of the
public or private IP pairs that they have received, it will
successfully be accepted as valid traffic by the router, al-
lowing for full bi-directional peer-to-peer communication
between the users [8].

Once external communication has been established,
the client application on each user’s computer opens up
an internal UDP port that parses any incoming OSC mes-
sages it receives and multicasts that message to everyone
in that user’s group. Due to the flexible nature of OSC
the origin of these messages could be from any applica-
tion that has OSC capabilities, including programs such
as Max/MSP, SuperCollider, or Reaktor [5] [21] [13].

The benefits of this approach are that users can eas-
ily and dynamically form groups to share messages be-
tween while being in completely different places in the
world, without having to note the individual public and
private IP endpoints of each person within the group. The
strain on the server is also minimal, as it only serves as
a rendezvous point for users, and none of the actual OSC
messages are passed to the server. The system’s multi-
casting architecture is quite appropriate for network mu-
sic systems that require musically significant gestures to
be shared over a network with the utmost speed and low
overhead granted by UDP messaging systems, but do not
require the reliability of a slower Transmission Control
Protocol (TCP) based system [16].

2.2. Reality of the Internet: Packet Loss

After extensive usage of this system within the context of
the authors’ network-based computer music band Glitch
Lich, several shortfalls of this system became apparent.
While OSCgroups is straightforward and robust, the us-
age of UDP meant that systems that relied upon extensive
synchronization between peers would often suffer from
potentially fatal errors during performance due to packet
loss. Packet loss (when a packet is sent at one endpoint,
but not received at the other) is an unfortunate reality of
networking that every networked program must address in
some way.

Many programs overcome this by utilizing TCP for re-
liability, which has built-in systems to handle packet loss,
retransmitting lost packets after a certain timeout period
[15]. However, for systems that require the utmost speed,
such as gaming and musical applications, TCP is deemed
inappropriate due to its sluggishness. Furthermore, the na-
ture of TCP’s retransmission mechanism means that criti-
cal real-time gestures in a game or piece of music may be
transmitted out of order, negatively impacting the quality
of play. Thus, TCP is too slow and unwieldy, and UDP is
too unreliable for pieces which rely upon stringent accu-
racy.

2.3. Looking to Multiplayer Videogames

The similarities between multiplayer gaming and network-
based music are rather striking. Both require raw speed to
ensure that multiple peers can react to each other’s ac-
tions as realistically as possible. In both, raw speed is
considered more important than absolutely receiving ev-
ery packet sent. In both, out of order information and in-
formation based upon an old state of the system should be
avoided if possible. However, both can be fatally affected

by the loss of certain important packets of information. It
seems only natural then for the network musician to look
to video game networking techniques to learn how they
deal with such an important issue.

Tim Sweeny, a game programmer and creator of the
Unreal Engine, wrote an in-depth analysis of the history,
difficulties, and techniques involved in programming mul-
tiplayer games titled “Unreal Networking Architecture”.
Written in 1999 at the veritable dawn of modern multi-
player First-Person Shooter (FPS) games, the document is
rather striking in its presentation of a problem that sounds
remarkably similar to the plight of the network musician.
Sweeny eloquently states that “Multiplayer gaming is about
shared reality: that all of the players feel they are in the
same world, seeing from differing viewpoints the same
events transpiring within that world [17].”One may eas-
ily replace multiplayer gaming with network music in that
sentence to describe the promise of network-based collab-
orative electronic music.

Sweeny describes a system that overcomes the short-
falls of packet loss in UDP by utilizing what he describes
as a “Generalised Client-Server Model ”(GCSM). In the
GCSM whenever a client makes an action the client si-
multaneously updates its own internal game state (the ex-
act state in which all objects in the world are in at any
given time), as well as sends its action as a message to the
server. The server then updates its own internal game state
to reflect these actions. After a period of time of receiv-
ing action messages from clients, referred to as the Delta-
Time, the server will update its game state, using predic-
tive analysis to correctly account for lag time in message
transmission. The server then issues an update to all of
the clients, called a Tick. This game state may differ from
that of any of the clients’ due to several issues, including
packet loss, and the inherent asynchronicity of client ac-
tions due to lag. However, as Sweeny put it “The Server
is The Man”and the server’s game state takes precedence
over that of the client. Thus, when a client receives an
update after DeltaTime, its internal game state is replaced
with that of the servers. This solves both of the previ-
ous problems stated in the previous section: The client’s
actions are perceived to be immediate (as it updates its
own internal game state immediately), it receives peers’
actions in a swift manner due to the usage of UDP, but
if a packet is lost in transmission, a system is in place to
handle it in a sensible and reliable way.

To the user the only perceived anomalies are when
there is a discrepancy in the server update, usually due
to packet loss or lag. For example, he may have perceived
himself as shooting another player in the head, but the
server states that the player is still alive. While this can
be vexing, it is preferable to the alternative: the client
kills the other player on their computer, but in the other
player’s game-state they are still alive, effectively creat-
ing simultaneous alternate realities and immediately ruin-
ing any notion of a shared experience. On the other hand,
there is always the reverse scenario in which the client be-
lieves they missed, when in fact, the server states they hit

their target.

2.4. A Musical Approach to a Gaming Model

OSCthulhu was created as a musical analogue to the GCSM
approach. After testing several implementations of the
GCSM as described by Sweeny, some tweaking was re-
quired to produce a model that was appropriate for usage
in the context of a network music environment. The core
of OSCthulhu is the way it represents data, which is very
similar in approach as the GCSM. Data is represented in
the system as a series of networked entities called Syn-
cObjects. These SyncObjects contain an arbitrary amount
of modifiable values, called SyncArguments. SyncArgu-
ments may be Strings, Integers, Floats, or Doubles. While
in the original GCSM SyncArguments were accompanied
by a fixed name, in OSCthulhu they are referred to by in-
dex. This change was made to preserve bandwidth.

Another change that was made was the behavior of
client actions and ticks. In OSCthulhu, when a client ac-
tion is received it is immediately multicast to all of the
clients instead of the server waiting for DeltaTime and is-
suing a Tick to update the clients. This was done to make
the system as fast as possible, though at the expense of
more bandwidth. This is considered acceptable for mu-
sical purposes, as the average network music server will
deal with significantly less traffic than a gaming server,
and thus can afford to be faster at the expense of being
less efficient. This also means that there are two ways
that a client may be updated in OSCthulhu, either by a
setSyncArg message, which updates a single SyncArgu-
ment, or by a serverSync message which wholly replaces
the client’s state with the servers.

2.5. A difference in styles

One key point to keep in mind when using OSCthulhu
is that it is fundamentally a different way of organizing
the manner in which a networked composition or soft-
ware system is constructed. Oftentimes we as composers
think of networking as a series of commands: change sec-
tions, get louder, stop playing, switch timbres, etc. To
network with OSCthulhu, a composer must think of his
or her composition instead in terms of a series of objects.
These objects may be manipulated in similar fashion to
the components of an object-oriented programming lan-
guage. Objects may be created, destroyed, or have their
values altered. So instead of our previous example where
we gave commands to modify music, instead a composer
would have an object that represents a synthesis unit gen-
erator, including variables that represent that unit genera-
tor’s amplitude and timbre. To create another instance of
that unit generator, perhaps with a different set of argu-
ments, one would simply add another instance of that ob-
ject to OSCthulhu. This approach may require a bit more
forethought, but the structure lends itself well to network-
ing musical contexts, especially in remotely rendered syn-
thesis configurations.

_310 _311

can produce long-lasting results and the time specific pa-
rameters for execution are much less restrictive than in a
traditional performance. The practice leads to organic in-
terdependencies and produces layers of uncertainty which
afford unexplored modes of performance, composition,
and listening [6] .

Currently groups like the Hub, PLOrk, Powerbooks
Unplugged and many others favor the Open Sound Con-
trol (OSC) protocol for networking data between nodes.
OSC is a flexible protocol that is geared towards commu-
nication between musical systems. OSC provides a dy-
namic and powerful framework with high resolution data
which is usable on local networks and across the internet
[22]. In surveying the current solutions we feel that there
is room for an alternative solution for networking compo-
sitions and performances, which implements techniques
established by multiplayer video games.

2. OSCTHULHU 1.0

Work on a new OSC-based platform for networking col-
laborative electronic music began in June 2010. The project,
named OSCthulhu, was inspired by the program OSC-
groups created by Ross Bencina, which enables users to
share OSC messages with each other over a network [2].
OSCgroups accomplishes this by creating a central ren-
dezvous server that uses Network Address Translation (NAT)
hole-punching techniques to enable individual users to by-
pass firewall and router restrictions normally placed on
peer-to-peer communications.

2.1. Nat Hole-Punching and UDP multicasting

Normally, a router will block any message that is received
unless a previous message has been sent out by the user
to that specific IP address and port. This is done to pre-
vent nefarious traffic from reaching the user’s private net-
work and computer. Furthermore, the IP address and port
of an application behind a user’s router is obfuscated by
Network Address Translation (NAT), a system utilized by
routers to preserve IP address real estate on the open inter-
net (largely addressed by the upgrade from Ipv4 to Ipv6)
[10]. The server works around this by noting the private
and public IP Address and port pairs, known as an end-
point, of each user that logs into a group. The server
distributes this information to everyone within the group,
at which point all of the users then asynchronously send
messages to all of the public and private endpoints that
it has received from the server. The first messages re-
ceived at either end will be discarded by their respective
routers as they have not been met with a matching out-
going message. However, now the user has punched a
hole in their firewall by sending an outgoing message to
each of the recorded endpoints. Now when the user re-
ceives messages at their endpoint, be it from any of the
public or private IP pairs that they have received, it will
successfully be accepted as valid traffic by the router, al-
lowing for full bi-directional peer-to-peer communication
between the users [8].

Once external communication has been established,
the client application on each user’s computer opens up
an internal UDP port that parses any incoming OSC mes-
sages it receives and multicasts that message to everyone
in that user’s group. Due to the flexible nature of OSC
the origin of these messages could be from any applica-
tion that has OSC capabilities, including programs such
as Max/MSP, SuperCollider, or Reaktor [5] [21] [13].

The benefits of this approach are that users can eas-
ily and dynamically form groups to share messages be-
tween while being in completely different places in the
world, without having to note the individual public and
private IP endpoints of each person within the group. The
strain on the server is also minimal, as it only serves as
a rendezvous point for users, and none of the actual OSC
messages are passed to the server. The system’s multi-
casting architecture is quite appropriate for network mu-
sic systems that require musically significant gestures to
be shared over a network with the utmost speed and low
overhead granted by UDP messaging systems, but do not
require the reliability of a slower Transmission Control
Protocol (TCP) based system [16].

2.2. Reality of the Internet: Packet Loss

After extensive usage of this system within the context of
the authors’ network-based computer music band Glitch
Lich, several shortfalls of this system became apparent.
While OSCgroups is straightforward and robust, the us-
age of UDP meant that systems that relied upon extensive
synchronization between peers would often suffer from
potentially fatal errors during performance due to packet
loss. Packet loss (when a packet is sent at one endpoint,
but not received at the other) is an unfortunate reality of
networking that every networked program must address in
some way.

Many programs overcome this by utilizing TCP for re-
liability, which has built-in systems to handle packet loss,
retransmitting lost packets after a certain timeout period
[15]. However, for systems that require the utmost speed,
such as gaming and musical applications, TCP is deemed
inappropriate due to its sluggishness. Furthermore, the na-
ture of TCP’s retransmission mechanism means that criti-
cal real-time gestures in a game or piece of music may be
transmitted out of order, negatively impacting the quality
of play. Thus, TCP is too slow and unwieldy, and UDP is
too unreliable for pieces which rely upon stringent accu-
racy.

2.3. Looking to Multiplayer Videogames

The similarities between multiplayer gaming and network-
based music are rather striking. Both require raw speed to
ensure that multiple peers can react to each other’s ac-
tions as realistically as possible. In both, raw speed is
considered more important than absolutely receiving ev-
ery packet sent. In both, out of order information and in-
formation based upon an old state of the system should be
avoided if possible. However, both can be fatally affected

by the loss of certain important packets of information. It
seems only natural then for the network musician to look
to video game networking techniques to learn how they
deal with such an important issue.

Tim Sweeny, a game programmer and creator of the
Unreal Engine, wrote an in-depth analysis of the history,
difficulties, and techniques involved in programming mul-
tiplayer games titled “Unreal Networking Architecture”.
Written in 1999 at the veritable dawn of modern multi-
player First-Person Shooter (FPS) games, the document is
rather striking in its presentation of a problem that sounds
remarkably similar to the plight of the network musician.
Sweeny eloquently states that “Multiplayer gaming is about
shared reality: that all of the players feel they are in the
same world, seeing from differing viewpoints the same
events transpiring within that world [17].”One may eas-
ily replace multiplayer gaming with network music in that
sentence to describe the promise of network-based collab-
orative electronic music.

Sweeny describes a system that overcomes the short-
falls of packet loss in UDP by utilizing what he describes
as a “Generalised Client-Server Model ”(GCSM). In the
GCSM whenever a client makes an action the client si-
multaneously updates its own internal game state (the ex-
act state in which all objects in the world are in at any
given time), as well as sends its action as a message to the
server. The server then updates its own internal game state
to reflect these actions. After a period of time of receiv-
ing action messages from clients, referred to as the Delta-
Time, the server will update its game state, using predic-
tive analysis to correctly account for lag time in message
transmission. The server then issues an update to all of
the clients, called a Tick. This game state may differ from
that of any of the clients’ due to several issues, including
packet loss, and the inherent asynchronicity of client ac-
tions due to lag. However, as Sweeny put it “The Server
is The Man”and the server’s game state takes precedence
over that of the client. Thus, when a client receives an
update after DeltaTime, its internal game state is replaced
with that of the servers. This solves both of the previ-
ous problems stated in the previous section: The client’s
actions are perceived to be immediate (as it updates its
own internal game state immediately), it receives peers’
actions in a swift manner due to the usage of UDP, but
if a packet is lost in transmission, a system is in place to
handle it in a sensible and reliable way.

To the user the only perceived anomalies are when
there is a discrepancy in the server update, usually due
to packet loss or lag. For example, he may have perceived
himself as shooting another player in the head, but the
server states that the player is still alive. While this can
be vexing, it is preferable to the alternative: the client
kills the other player on their computer, but in the other
player’s game-state they are still alive, effectively creat-
ing simultaneous alternate realities and immediately ruin-
ing any notion of a shared experience. On the other hand,
there is always the reverse scenario in which the client be-
lieves they missed, when in fact, the server states they hit

their target.

2.4. A Musical Approach to a Gaming Model

OSCthulhu was created as a musical analogue to the GCSM
approach. After testing several implementations of the
GCSM as described by Sweeny, some tweaking was re-
quired to produce a model that was appropriate for usage
in the context of a network music environment. The core
of OSCthulhu is the way it represents data, which is very
similar in approach as the GCSM. Data is represented in
the system as a series of networked entities called Syn-
cObjects. These SyncObjects contain an arbitrary amount
of modifiable values, called SyncArguments. SyncArgu-
ments may be Strings, Integers, Floats, or Doubles. While
in the original GCSM SyncArguments were accompanied
by a fixed name, in OSCthulhu they are referred to by in-
dex. This change was made to preserve bandwidth.

Another change that was made was the behavior of
client actions and ticks. In OSCthulhu, when a client ac-
tion is received it is immediately multicast to all of the
clients instead of the server waiting for DeltaTime and is-
suing a Tick to update the clients. This was done to make
the system as fast as possible, though at the expense of
more bandwidth. This is considered acceptable for mu-
sical purposes, as the average network music server will
deal with significantly less traffic than a gaming server,
and thus can afford to be faster at the expense of being
less efficient. This also means that there are two ways
that a client may be updated in OSCthulhu, either by a
setSyncArg message, which updates a single SyncArgu-
ment, or by a serverSync message which wholly replaces
the client’s state with the servers.

2.5. A difference in styles

One key point to keep in mind when using OSCthulhu
is that it is fundamentally a different way of organizing
the manner in which a networked composition or soft-
ware system is constructed. Oftentimes we as composers
think of networking as a series of commands: change sec-
tions, get louder, stop playing, switch timbres, etc. To
network with OSCthulhu, a composer must think of his
or her composition instead in terms of a series of objects.
These objects may be manipulated in similar fashion to
the components of an object-oriented programming lan-
guage. Objects may be created, destroyed, or have their
values altered. So instead of our previous example where
we gave commands to modify music, instead a composer
would have an object that represents a synthesis unit gen-
erator, including variables that represent that unit genera-
tor’s amplitude and timbre. To create another instance of
that unit generator, perhaps with a different set of argu-
ments, one would simply add another instance of that ob-
ject to OSCthulhu. This approach may require a bit more
forethought, but the structure lends itself well to network-
ing musical contexts, especially in remotely rendered syn-
thesis configurations.

_312 _313

Figure 1. Screen capture of the SyncObject and Chat win-
dow in OSCthulhu 2.0

Figure 2. OscGroups divergence over time.

2.6. OSCthulhu and OSCgroups: A comparison

OSCthulhu has not been designed to supersede OSCgroups.
Instead, it is meant to be an alternative approach, useful
for a set of situations that OSCgroups may be deemed to
be less suitable for. The advantages of OSCgroups over
OSCthulhu are a simpler interface with less overhead that
doesn’t restrict the structure in which it is used. Also,
due to OSCthulhu using a GCSM a server is required,
with all pertinent traffic being directed through that server.
Although a central server is required for OSCgroups as
well, this server can handle multiple groups simultane-
ously, and none of the multicasted traffic is forwarded
through the server.

However, OSCthulhu is appropriate for projects that
require both a close degree of synchronization as well as
the speed and simplicity of UDP multicasting. This allows
for the construction of new kinds of network-based elec-
tronic music systems or pieces. These systems can rely
upon shared resources to coordinate a network music per-
formance, with the knowledge that this information will
be transmitted in the most musically sensitive way, while
always being safely accounted for.

3. DIVERGENCE TEST

3.1. Methodology

A test was conducted to demonstrate this effect. This test
consisted of two nodes, one in London, England and the
other in Boulder, Colorado, both using standard consumer
level broadband networks, sending messages to each other.
Standard broadband was chosen for this experiment as
OSCthulhu has been designed specifically to facilitate net-
work music performance in real world environments out-
side the confines of academic institutions with access to
research networks. The results gathered in this experi-
ment may differ on these academic research networks and
future experiments are planned to investigate the differ-
ences this makes.

These two nodes created and altered various data sets
on their own systems, while simultaneously sending mes-
sages to each other to coordinate those same changes on
the other node. There were three different actions a node
could make: create an array (with a random number of
indices, each containing a random value), alter an index
of an array, or delete an array. These actions were chosen
randomly, with index alterations occurring twenty times
more often than creating or removing an array, to reflect
real world scenarios. The test was conducted with four
different send rates at which changes would occur and
messages would be sent: every 250, 100, 25, and 12.5
milliseconds. These messages were sent over a period of
two minutes, using either OscGroups or OSCthulhu on
subsequent run-throughs for comparison.

A value called divergence was collected every 10 mil-
liseconds for each run-through. This test defined diver-
gence as a measurement of the difference between the two
nodes’ states at any given moment in time. For example,
if at a given moment node one contained four arrays, and
node two contained five arrays, but four of those arrays
were identical to those contained in node 1, then the sys-
tems would be considered 20% divergent. Figure 2 shows
the results produced by OscGroups.

3.2. Results

The results show a staggering amount of divergence, with
the systems immediately beginning at approximately 20%
divergence, and becoming more divergent over time, set-
tling at approximately 50%. This divergence can be ac-
counted for by packet loss, lag time, and the cascading
nature of divergence (i.e. if an array is missing on one
node, the other node is not aware of this and will continue
to attempt to set values in it. They will not realign until the
second node serendipitously removes the array). Glitch
Lich has personally encountered this divergence in perfor-
mance, wherein a member at one node is creating sounds
with a certain unit generator they have created, but the
other nodes do not contain this unit generator, therefore
the first node’s performance is effectively non-existent.

Figure 3 shows the results for OSCthulhu. The results
show a stark difference as the amount of divergence is pre-

Figure 3. OSCthulhu divergence over time.

dominantly zero, with spikes up to 5-10%. There are two
main reasons for this large difference in divergence be-
tween the two systems. Firstly, the effects of packet loss
are drastically minimized, as the GCSM server synchro-
nization cycle ensures that every cycle period (1000 mil-
liseconds used for this test) the two nodes locked back in
step (unless the synchronization packet itself is lost, which
does happen on occasion). This prevents the cascading
effects of divergence from taking hold, so differences do
not pile upon each other over time. Secondly, differences
due to lag time are also minimized, as all the actions are
first sent to the central server which then simultaneously
broadcasts the effects to both nodes. These nodes then re-
ceive the message and act upon it in a very similar time
scale.

3.3. Benefits of Convergence

One manner in which networked ensembles may take ad-
vantage of this capability is through the usage of what
may be called Remotely Rendered Synthesis. In many
network music bands, including most of the work con-
ducted by The Hub and PLOrk, network messages are
transmitted among multiple participants to influence each
other’s behavior. Each member then uses their own com-
puter to output their own sounds. In comparison, in a
Remotely Rendered Synthesis configuration, each of the
participants share their sound synthesis descriptors with
each other member beforehand(in the case of Glitch Lich,
SuperCollider SynthDefs are used); then, a Sound State
is constructed that is mirrored on each participant’s own
computer. This Sound State is similar to a Game State in
Sweeny’s GCSM, except that the data being synchronized
represents the state of a sonic world instead of a virtual
game world. OSCthulhu keeps track of the Sound State
present on each user’s computer. Whenever a member
makes a change to their particular version of the Sound
State, this change is replicated on the server, and shared
with the whole group. Then, each member’s computer
outputs audio that contains the full sound present in the
piece, including audio that is being produced by other
members. This is useful for network music performances
wherein all the members are not geographically co-located.

Figure 4. Yig in performance at the Network Music Fes-
tival in Birmingham, UK, powered by OSCthulhu.

Another benefit of OSCthulhu is that it does not re-
quire NAT traversal or UDP hole-punching, due to the
multicasted traffic being forwarded through a centralized
server. Hole-punching techniques, although mostly suc-
cessful, have been shown to be ineffective in as much as
20% of routers in general use [8]. Since OSCthulhu uti-
lizes a more traditional client-server model, firewalls and
routers recognize the traffic passing through as legitimate
outgoing and incoming traffic, similar to what you would
see from any web-based server.

OSCthulhu makes designing interactive environments
a natural process. Because networking is argument fo-
cused instead of message focused, the programmer is freed
from worrying about maintaining internal mappings of
virtual arguments. The programmer only needs to design
their program to react accordingly to state changes and
output their local changes to the client. The OSCthulhu
client does the heavy lifting of maintaining the argument
list, responding to the OSCthulhu server commands di-
rectly, and updating in response to synchronization cy-
cles. This provides a single universal interface to program
against.

4. FUTURE WORK

As more testing is conducted with OSCthulhu, more fea-
tures will be added and more bug fixing will be conducted.
Future features that are currently being researched include
the following: The ability to record and playback states as
captured by the OSCthulhu Server. An interface for mod-
ifying each individual SyncObject contained on the server
may prove useful, especially in situations where an errant
object may not be modifiable from the performance GUI.
If the OSCthulhu system were to gain more exposure one
feature that may be deemed beneficial would be a system
for locating other OSCthulhu users on the open internet
in a more casual manner. Similar to video game network-
ing, a meta-server could be put in place that all OSCthulhu
servers register with. Thus, a client could query the meta-
server to gain a list of all the OSCthulhu servers running
at any point in time in the world, and could connect to

_312 _313

Figure 1. Screen capture of the SyncObject and Chat win-
dow in OSCthulhu 2.0

Figure 2. OscGroups divergence over time.

2.6. OSCthulhu and OSCgroups: A comparison

OSCthulhu has not been designed to supersede OSCgroups.
Instead, it is meant to be an alternative approach, useful
for a set of situations that OSCgroups may be deemed to
be less suitable for. The advantages of OSCgroups over
OSCthulhu are a simpler interface with less overhead that
doesn’t restrict the structure in which it is used. Also,
due to OSCthulhu using a GCSM a server is required,
with all pertinent traffic being directed through that server.
Although a central server is required for OSCgroups as
well, this server can handle multiple groups simultane-
ously, and none of the multicasted traffic is forwarded
through the server.

However, OSCthulhu is appropriate for projects that
require both a close degree of synchronization as well as
the speed and simplicity of UDP multicasting. This allows
for the construction of new kinds of network-based elec-
tronic music systems or pieces. These systems can rely
upon shared resources to coordinate a network music per-
formance, with the knowledge that this information will
be transmitted in the most musically sensitive way, while
always being safely accounted for.

3. DIVERGENCE TEST

3.1. Methodology

A test was conducted to demonstrate this effect. This test
consisted of two nodes, one in London, England and the
other in Boulder, Colorado, both using standard consumer
level broadband networks, sending messages to each other.
Standard broadband was chosen for this experiment as
OSCthulhu has been designed specifically to facilitate net-
work music performance in real world environments out-
side the confines of academic institutions with access to
research networks. The results gathered in this experi-
ment may differ on these academic research networks and
future experiments are planned to investigate the differ-
ences this makes.

These two nodes created and altered various data sets
on their own systems, while simultaneously sending mes-
sages to each other to coordinate those same changes on
the other node. There were three different actions a node
could make: create an array (with a random number of
indices, each containing a random value), alter an index
of an array, or delete an array. These actions were chosen
randomly, with index alterations occurring twenty times
more often than creating or removing an array, to reflect
real world scenarios. The test was conducted with four
different send rates at which changes would occur and
messages would be sent: every 250, 100, 25, and 12.5
milliseconds. These messages were sent over a period of
two minutes, using either OscGroups or OSCthulhu on
subsequent run-throughs for comparison.

A value called divergence was collected every 10 mil-
liseconds for each run-through. This test defined diver-
gence as a measurement of the difference between the two
nodes’ states at any given moment in time. For example,
if at a given moment node one contained four arrays, and
node two contained five arrays, but four of those arrays
were identical to those contained in node 1, then the sys-
tems would be considered 20% divergent. Figure 2 shows
the results produced by OscGroups.

3.2. Results

The results show a staggering amount of divergence, with
the systems immediately beginning at approximately 20%
divergence, and becoming more divergent over time, set-
tling at approximately 50%. This divergence can be ac-
counted for by packet loss, lag time, and the cascading
nature of divergence (i.e. if an array is missing on one
node, the other node is not aware of this and will continue
to attempt to set values in it. They will not realign until the
second node serendipitously removes the array). Glitch
Lich has personally encountered this divergence in perfor-
mance, wherein a member at one node is creating sounds
with a certain unit generator they have created, but the
other nodes do not contain this unit generator, therefore
the first node’s performance is effectively non-existent.

Figure 3 shows the results for OSCthulhu. The results
show a stark difference as the amount of divergence is pre-

Figure 3. OSCthulhu divergence over time.

dominantly zero, with spikes up to 5-10%. There are two
main reasons for this large difference in divergence be-
tween the two systems. Firstly, the effects of packet loss
are drastically minimized, as the GCSM server synchro-
nization cycle ensures that every cycle period (1000 mil-
liseconds used for this test) the two nodes locked back in
step (unless the synchronization packet itself is lost, which
does happen on occasion). This prevents the cascading
effects of divergence from taking hold, so differences do
not pile upon each other over time. Secondly, differences
due to lag time are also minimized, as all the actions are
first sent to the central server which then simultaneously
broadcasts the effects to both nodes. These nodes then re-
ceive the message and act upon it in a very similar time
scale.

3.3. Benefits of Convergence

One manner in which networked ensembles may take ad-
vantage of this capability is through the usage of what
may be called Remotely Rendered Synthesis. In many
network music bands, including most of the work con-
ducted by The Hub and PLOrk, network messages are
transmitted among multiple participants to influence each
other’s behavior. Each member then uses their own com-
puter to output their own sounds. In comparison, in a
Remotely Rendered Synthesis configuration, each of the
participants share their sound synthesis descriptors with
each other member beforehand(in the case of Glitch Lich,
SuperCollider SynthDefs are used); then, a Sound State
is constructed that is mirrored on each participant’s own
computer. This Sound State is similar to a Game State in
Sweeny’s GCSM, except that the data being synchronized
represents the state of a sonic world instead of a virtual
game world. OSCthulhu keeps track of the Sound State
present on each user’s computer. Whenever a member
makes a change to their particular version of the Sound
State, this change is replicated on the server, and shared
with the whole group. Then, each member’s computer
outputs audio that contains the full sound present in the
piece, including audio that is being produced by other
members. This is useful for network music performances
wherein all the members are not geographically co-located.

Figure 4. Yig in performance at the Network Music Fes-
tival in Birmingham, UK, powered by OSCthulhu.

Another benefit of OSCthulhu is that it does not re-
quire NAT traversal or UDP hole-punching, due to the
multicasted traffic being forwarded through a centralized
server. Hole-punching techniques, although mostly suc-
cessful, have been shown to be ineffective in as much as
20% of routers in general use [8]. Since OSCthulhu uti-
lizes a more traditional client-server model, firewalls and
routers recognize the traffic passing through as legitimate
outgoing and incoming traffic, similar to what you would
see from any web-based server.

OSCthulhu makes designing interactive environments
a natural process. Because networking is argument fo-
cused instead of message focused, the programmer is freed
from worrying about maintaining internal mappings of
virtual arguments. The programmer only needs to design
their program to react accordingly to state changes and
output their local changes to the client. The OSCthulhu
client does the heavy lifting of maintaining the argument
list, responding to the OSCthulhu server commands di-
rectly, and updating in response to synchronization cy-
cles. This provides a single universal interface to program
against.

4. FUTURE WORK

As more testing is conducted with OSCthulhu, more fea-
tures will be added and more bug fixing will be conducted.
Future features that are currently being researched include
the following: The ability to record and playback states as
captured by the OSCthulhu Server. An interface for mod-
ifying each individual SyncObject contained on the server
may prove useful, especially in situations where an errant
object may not be modifiable from the performance GUI.
If the OSCthulhu system were to gain more exposure one
feature that may be deemed beneficial would be a system
for locating other OSCthulhu users on the open internet
in a more casual manner. Similar to video game network-
ing, a meta-server could be put in place that all OSCthulhu
servers register with. Thus, a client could query the meta-
server to gain a list of all the OSCthulhu servers running
at any point in time in the world, and could connect to

_314 _315

any open (non-password protected) servers. This would
allow for spontaneous network collaborations and impro-
visations to occur, similar to how users join video game
servers for spontaneous multiplayer games. Finally, con-
venience classes/libraries are planned to be constructed
for SuperCollider, C++, Java, Processing, and Max/MSP
that will take care of much of the boiler-plate code re-
quired to create an application that utilizes OSCthulhu.

5. CONCLUSION

The OSCthulhu synchronization system offers network mu-
sic composers a new choice for enabling network-based
compositions and performances. As the results show from
the tests conducted, OSCthulhu can be more effective than
OscGroups in certain scenarios for networked computer
music. If a dislocated ensemble wish to have the fluidity
of UDP based networking while maintaining a sufficient
level of reliability on the open internet, especially in cases
of shared musical resources, then OSCthulhu proves to be
a good choice to meet these demands.

6. REFERENCES

[1] A. Barbosa, “Displaced Soundscapes: A Survey of
Network Systems for Music and Sonic Art Cre-
ation,” Leonardo Music Journal, vol. 13, pp. 53–59,
2003.

[2] R. Bencina, “Oscgroups,” 2010, available
from: http://www.audiomulch.com/∼rossb/code/
oscgroups/ [Accessed 2 May 2010].

[3] C. Brown and J. Bischoff, “Indigenous to the
Net: Early Network Music Bands in the San
Francisco Bay Area,” August 2002, available
from: http://crossfade.walkerart.org/brownbischoff/
IndigenoustotheNetPrint.html [Accessed 2 August
2010].

[4] Cockos Incorporated, “Ninjam,” 2012, available
from:http://www.cockos.com/ninjam/ [Accessed
February 6th 2012].

[5] Cycling ’74, 2010, available from: http://cycling74.
com/ [Accessed 27 May 2010].

[6] A. De Campo and J. Rohrhuber, “Waiting and Un-
certainty in Computer Music Networks,” in Proceed-
ings of the 2004 International Computer Music Con-
ference, 2004.

[7] eJAMMING Audio, 2012, available from:http://
ejamming.com/ [Accessed February 6th 212].

[8] B. Ford, P. Srisuresh, and D. Kegel, “Peer-to-peer
communication across network address translators,”
2005, available from: http://www.brynosaurus.com/
pub/net/p2pnat/ [Accessed 20 July 2011].

[9] Glitch Lich, 2012, available from: http://glitchlich.
com/ [Accessed 10 January 2012].

[10] S. Hagen, IPv6 Essentials, 2nd ed. O’Reilly Media,
2006.

[11] S. Jordà, “Faust music online: An approach to col-
lective composition on the internet,” Leonardo Mu-
sic Journal, vol. 9, pp. 5–12, 1999.

[12] ResRocket, 2004, available from: http://www.
jamwith.us/about us/rocket history.shtml [Accessed
February 6th 2012].

[13] L. Sasso, Native Instruments: Reaktor 3- The Ulti-
mate Hands-on Guide for All Reaktor Fans. Wizoo,
2002.

[14] F. Schroeder, A. B. Renaud, P. Rebelo, and
F. Gualda, “Addressing the Network: Performa-
tive Strategies for Playing Apart,” in Proceedings of
the 2007 International Computer Music Conference,
2007, pp. 133–140.

[15] W. R. Stevens, TCP/IP Illustrated. Addison-Wesley
Professional, 1994.

[16] W. R. Stevens, B. Fenner, and A. M. Rudoff, UNIX
Network Programming: The sockets networking
API. Addison-Wesley Professional, 2004.

[17] T. Sweeney, 1999, available from: http://udn.
epicgames.com/Three/NetworkingOverview.html
[Accessed 16 May 2010].

[18] G. Wang, A. Misra, and P. R. Cook, “Building col-
laborative graphical interfaces in the audicle,” in
NIME ’06: Proceedings of the 2006 conference
on New interfaces for musical expression. Paris,
France, France: IRCAM — Centre Pompidou, 2006,
pp. 49–52.

[19] A. Ward, J. Rohrhuber, F. Olofsson, A. McLean,
D. Griffiths, N. Collins, and A. Alexander, “Live
Algorithm Programming and a Temporary Organi-
sation for Its Promotion,” Readme Software Art and
Culture, 2004.

[20] G. Weinberg, “Interconnected Musical Networks:
Toward a Theoretical Framework,” Computer Music
Journal, vol. 29(2), pp. 23–29, 2005.

[21] S. Wilson, D. Cottle, and N. Collins, Eds., The Su-
perCollider Book. Cambridge, MA: MIT Press,
2011.

[22] M. Wright, 2002, open sound control 1.0 specifi-
cation. Available from: http://opensoundcontrol.org/
spec-1 0 [Accessed 2 May 2010].

REALTIME WEB TECHNOLOGIES IN THE NETWORKED
PERFORMANCE ENVIRONMENT

Rob Canning

Department of Music
Goldsmiths, University of London, UK

rob@kiben.net

ABSTRACT

Current real-time web technologies are capable of pro-
viding composers of network based music with a new in-
frastructure for the distribution, control and synchronisa-
tion of the networked score. When these technologies are
combined with an adherence to web standards it is pos-
sible to remove software and platform specific solutions.
Cross-platform web browsers present the composer with a
standardised and accessible environment where notational
material can be presented to performers.

These technologies provide a useful set of tools and
processes to facilitate networked performance. The use
of standards compliant systems over proprietary ones pro-
motes interoperability and future proofing and provides a
platform for shared reseach. These systems can also re-
duce rehearsal/performance set-up time and complexities
to a fraction of that currently experienced with more ad-
hoc scenarios commonly implemented in this area of per-
formance.

This paper argues for the feasibility of how various
Web standards, including the Hypertext Markup Language
Revision 5 (HTML5), Scalable Vector Graphics (SVG)
and the ECMAScript programming language can combine
with real-time web server technologies, NodeJS and Web-
Sockets in one possible work-flow as implemented in the
author’s NodeScore system.

1. BACKGROUND

The pervasiveness of network enabled mobile devices, in
the western cultural context, from smart phones to tablets
and laptops, alongside widespread high speed network ac-
cess, in recent years has led to an increase in creative
musical experiments using these technologies[13]. There
has been an exponential growth of the laptop ensembles,
many following on the model established by the Prince-
ton Laptop Orchestra (PLOrk)[17] followed now by the
incorporation of the smart-phone in to the performance
environment as with the Stanford Mobile Phone Orchestra
(MoPhO). As with their predecessors (groups such as the
League of Automatic Music Composers and The HUB[7])
these ensembles often create their own ad-hoc strategies
and softwares for interaction. L2ORK for example, [14]
have created their own fork of the Pure Data softare as a

platform for both message passing, sound processing/syn-
thesis and networking.

The Laptop Orchestra model of treating the computer
as a meta-instrument, utilising its abilities as sound-processor
and input for Human Interface Devices (HIDs) has a very
different set of demands than for that of the networked
score. Common practice amongst composers working with
networked score systems involve the use of a generalised
audio oriented data-flow programming language, with plug-
ins to deal with networking (often Open Sound Control
(OSC)) and the presentation of notation (MaxScore, Java
Music Specification Language (JMSL), OpenMusic or Lily-
pond based). Visual programming languages such as Pure
Data or MaxMSP are the lingua franca of many computer
musicians, and when it comes to finding strategies for the
presentation of notational material to instrumental musi-
cians, composers will very often use these types of tools
as they are familiar and flexible tools (for example in Ger-
hard Winkler’s Real-time scores [18] or Georg Hajdu’s
Quintet.net[8].)

These systems can, and do work, but this kind of ap-
proach is hampered by problems. Multiple, non standard
installations of expensive platform specific softwares and
associated plug-ins (often requiring expensive hardware),
difficulties with networking; Network Address Transla-
tion (NAT) transversal and the circumvention of firewall
restrictions, Network Time Protocol (NTP) synchronisa-
tion between clients as well as issues surrounding the in-
corporation of middleware to enable communications with
some HIDs, are examples of some common problems. It
suffices to say that many of these configurations are non-
trivial to implement and require a technician with con-
siderable understanding of both the specific software and
network protocols being used.1 In this context modular-
isation is the best way forward and the separation of the
score interface from tools designed for the creation of new
electronic instruments is an important step.

1The GRid-ENabled Deployment for Laptop orchestras (GRENDL)
project [3] aims to eliminate many of the problems associated with the
practicalities of the performance and organisation of pieces for laptop
orchestras.

