
Collaboration and Embodiment
in Networked Music Interfaces
for Live Performance
Chad McKinney

Submitted for the degree of D.Phil.

University of Sussex

October, 2016

Declaration
I hereby declare that this thesis has not been submitted, either in the same or different

form, to this or any other university for a degree.

Signature:

Supervisors: Dr. Nick Collins & Dr. Martin Berger

Examiners:

Acknowledgements
I am incredibly indebted to the tremendous support and generosity of my wife Jessica, and

our two amazing children, Lorelei and Tristan. They have followed me across the world

and helped me follow my dreams. They believed in me when I didn’t believe in myself,

and kept me grounded when I became lost.

I am also incredibly grateful to have had two of the most inspiring, knowledgeable, and

supportive supervisors, Nick Collins and Martin Berger. Nick began me on this journey and

never led me astray. Witnessing his daring work and hearing his sharp wit are two things

I’ll dearly miss about this time. As well, Martin has been been an incredibly consistent and

energizing figure. He provoked interesting and new ideas and helped build my confidence

when I sorely lacked it.

The execution of this research could not have been possible without my collabora-

tors and friends, Cole Ingraham, Curtis McKinney, and Benjamin O’Brien. They suffered

through my mad whimsy and endured experimentations with software version of highly

dubious stability. Their creativity and insight made this research much better than it could

have been otherwise.

I would like to especially thank Curtis, who started down a path that I’ve only been

following. He is my most ardent supporter and my harshest critic; someone who never

held back, but never let me quit. That said, we can all agree that I came up with the better

song titles.

I was lucky enough to meet and befriend some tremendously great people during my

time at Sussex. Thanks to Thor Magnusson, Chris Kiefer, Anna Jordanous, Alice Eldridge,

Gareth White, and Pejman Mirza-Babaei for making those years so exciting.

I greatly appreciate the contributions of time and insight from the various participants

of the studies in this thesis. They literally helped define my research and expanded my

ideas about music and technology, for which I am incredibly grateful.

Finally, I would like to thank all my friends and family who have shown so much

support over the years. They never stopped believing in me, and helped me strive to

achieve my greatest goals.

Collaboration and Embodiment
in Networked Music Interfaces
for Live Performance
Chad McKinney

Summary
Research regarding liveness and embodiment in electronic music has tended to explore
the relationship of bodies and instruments, audience perception, interfaces, and shifting
definitions, less theoretical and empirical study has considered network situations, per-
haps given their relative cultural novelty. Network music has seen many advances since
the time of the Telharmonium, including the invention of the personal computer and the
widespread proliferation of internet connectivity. These advances have fostered a unique
approach to live electronic music that facilitates collaboration in a field where solo per-
formance is perhaps more common. This thesis explores the design of network music
interfaces, and how those interfaces mediate collaborations.

Three new network music system interfaces, each using different a different paradigm
for interface design are presented in this study. One an instrument for creating modular
feedback lattices. Another is a three dimensional virtual pattern sequencer. And the last
is a web based collaborative live coding language. Accompanying each system is an eval-
uation using quantitative and qualitative analysis to frame these instruments in a larger
context regarding network music. The results highlight important themes concerning the
design of networked interfaces, and the attitudes of musicians regarding networked col-
laborations.

Submitted for the degree of D.Phil.

University of Sussex

October, 2016

Contents

1 Introduction 1

1.1 Liveness, Embodiment and Networked Performance 2

1.2 Research Questions and Themes . 3

1.3 Contributions . 3

1.4 Relevance . 4

1.5 Structure . 4

1.6 Related Publications . 4

1.7 Related Performances . 5

1.7.1 Yig Performances . 5

1.7.2 Shoggoth Performances . 6

1.7.3 Lich.js Performances . 6

2 Network Music 7

2.1 Network Music . 8

2.2 Origins and Early Network Music . 9

2.3 Telepresence . 14

2.3.1 Early Telepresence and Art . 14

2.3.2 Performance Streaming Over the Internet 16

2.3.3 Strategies for the Acceptance of Latency and Networking Idiosyn-

crasies . 18

2.3.4 Collaborative Composition and Jamming 21

2.4 Interactive Music in the Browser . 22

2.5 Network Music, Present and Future Trends and Technologies 26

2.5.1 Laptop Orchestras and Bands . 26

2.5.2 Developments in Network Technology 27

2.5.3 Languages, Frameworks, and Live Coding 28

2.5.4 Web Technology and Live Coding . 30

2.5.5 Mobile Development . 32

2.6 Theory and Taxonomy . 33

2.6.1 Computer Supported Cooperative Work 40

2.7 Conclusion . 40

3 Liveness In Network Music Performance 41

3.1 Introduction . 42

3.2 Questionnaire . 42

3.3 Emerging Themes . 43

Contents vii

3.3.1 Communication . 43

3.3.2 Control and Performance . 44

3.3.3 Live Coding . 45

3.3.4 Visual Presentation . 45

3.3.5 Perceptions of Liveness . 46

3.3.6 Ensemble Structure . 48

3.4 Summary . 49

4 Yig, The Father of Serpents 50

4.1 Introduction . 51

4.2 Design Philosophy . 52

4.3 The Interface . 53

4.3.1 Features . 54

4.3.2 GUI Development . 55

4.3.3 Synth Definition Development . 56

4.4 Networking . 57

4.4.1 Synchronization . 58

4.4.2 Divergence in the Network . 59

4.5 Categorization . 60

4.6 Audio Divergence Test . 63

4.7 Design Summary and Future Work . 64

4.8 User Evaluation . 65

4.8.1 Quantitative Results . 65

4.8.2 Qualitative Results . 71

5 An Interactive 3D Networked Music Space 75

5.1 Introduction . 76

5.2 Design Philosophy . 77

5.3 The Interface . 78

5.4 Sound Design . 80

5.5 Networking . 82

5.6 Categorization . 83

5.7 Performance in Virtual Space . 85

5.8 Reflections on Development . 86

5.9 Experienced User Evaluation . 86

5.10 Summary . 89

6 Quick Live Coding Collaboration in the Browser 90

6.1 Lich.js . 91

6.2 Design Philosophy . 91

6.3 Language Design and Implementation . 93

6.4 Synths and Patterns . 95

6.4.1 Scheduling . 96

Contents viii

6.5 Graphics . 97

6.6 Networking . 98

6.7 Categorization . 99

6.8 Comparing Lich.js and Javascript Performance 102

6.9 Design Summary and Future Work . 103

6.10 User Evaluation . 104

6.10.1 Quantitative Analysis . 105

6.10.2 Qualitative Analysis . 107

7 Conclusion 111

7.1 Brief Review . 112

7.2 Summary of Findings . 112

7.2.1 How do distribution, virtual spaces, communication, and autonomy

impact a network music interface and collaboration? 112

7.2.2 What characteristics define a successful live networked music inter-

face and collaboration? . 114

7.2.3 Do computer musicians consider interfaces with virtualized environ-

ments to embody those characteristics? 115

7.2.4 Do musicians have a preference regarding co-location and distribu-

tion in collaborations? . 115

7.3 Discussion and Future Work . 116

Bibliography 118

Appendices I

A Liveness In Network Music Performance II

A.1 Questionnaire on the Views of Network Musicians About Liveness in Perfor-

mance . III

A.2 Ethics Approval . V

B Yig, The Father of Serpents VII

B.1 Yig Recording Comparison . VIII

B.2 Ethics Approval . IX

B.3 User Evaluation Questions . X

B.3.1 Background . X

B.3.2 Evaluation Questionnaire Session 1 X

B.3.3 Evaluation Questionnaire Session 2 XI

B.3.4 Interview Questions . XII

B.4 Yig And Auracle Evaluation Thematic Analysis Codes XII

B.4.1 Auracle – Distributed Codes . XII

B.4.2 Auracle – Co-located Codes . XIV

B.4.3 Yig – Distributed Codes . XVI

B.4.4 Yig – Co-located Codes . XVII

Contents ix

B.5 Yig And Auracle Evaluation Likert Items . XX

C An Interactive 3D Networked Music Space XXVI

C.1 User Evaluation Questions . XXVII

D Quick Live Coding Collaboration in the Browser XXVIII

D.1 User Evaluation Numbered Responses . XXIX

D.2 User Evaluation Questionnaire Responses XXX

D.3 Lich.js Thematic Analysis Codes . XXXV

D.4 Lich.js Thematic Analysis Sub-Themes . XXXVII

D.5 Lich.js Thematic Analysis Major Themes . XXXVIII

D.6 Ethics Approval . XXXIX

D.7 Lich and JavaScript Benchmark Test code XL

List of Figures
10

2.2 Max Neuhaus’s illustration demonstrating the signal flow for his work Radio
Net (Neuhaus, 2004c) . 12

2.3 The League of Automatic Music Composers (Perkis, Horton, and Bischoff,

left to right) performing at Ft. Mason, San Francisco 1981 (Brown &

Bischoff, 2002). 13

2.4 Distributed jam session between Stanford and McGill (Carôt, 2004). 18

2.5 One installation of Stelarc’s Internet Ear (Stelarc, 2011). 20

2.6 Screen capture of a configuration window in Faust Music On Line (Jordà,

1999). 22

2.7 Screen capture of nm.81 by Netochka Nezvanova (Föllmer, 2005) 23

2.8 One possible configuration of circles in Circuli (Bozkurt, 2011a). 26

2.9 Two players playing Plink online at the same time (Dinamoe Labs, 2013). . 27

2.10 Live coding band Slub performing with Tidal and Scheme Blocks (Aagaard,

2013). 29

2.11 Browser based generative visuals in GLSL Sandbox (Fontan & Goberna,

2013). 31

2.12 Barbosa’s Network Music classifications placed in Johansen’s four-square

dimension space . 34

2.13 Weinberg’s enumeration of various network configurations 36

2.14 Föllmer’s Spatial Order of the Twelve Types of Net Music. 39

4.1 Glitch Lich performance at the Network Music Festival using Yig with an

external visualization program. 53

4.2 Screen shot of Yig, the Father of Serpents. 54

4.3 Three Yig synth objects connected to eachother. 55

4.4 Yig’s basic SuperCollider synth definition template 56

4.5 Jasuto, Max/MSP, Reason, and the ReacTable plotted in Magnusson’s epis-

temic dimension space. 62

4.6 Yig in the epistemic dimension space. 63

4.7 Comparison of recordings from two nodes with identical states. 64

4.8 Yig Likert Items. 67

4.9 Auracle Likert Items. 67

4.10 Co-Located Likert Items. 70

4.11 Distributed Likert Items. 70

List of Figures xi

5.1 One possible terrain shape in Shoggoth. The heightmap defining the shape

of the terrain is also used for the buffers of the wave terrain ugens in the

running synths. 78

5.2 Glitch Lich performance of Shoggoth at /*vivo*/. 79

5.3 Wireframe render for an island terrain, demonstrating the triangle mesh

and high polygon count. 80

5.4 Multiple islands with sequences. The red area on the bottom left islands is

a looping sequence that triggers synth onsets. 81

5.5 Three looping sequencers on an island. When the sequencers land on white

triangles a synth onset is triggered. 82

5.6 Shoggoth in the epistemic dimension space. 84

6.1 Glitch Lich performance using Lich.js at an Algorave in Tokyo. 92

6.2 Some example Lich.js code that demonstrates a similarity to Haskell. 93

6.3 Audio generation using the play method. 95

6.4 Some expressions for synth and pattern generation. 96

6.5 Generative visuals created with Lich.js . 97

6.6 Lich.js code used to generate the scene in Figure 6.5 98

6.7 Lich.js in the epistemic dimension space. 103

6.8 A comparison of the execution speed of Lich.js in continuation passing style,

Lich.js as it is currently, and the equivalent JavaScript code. 104

6.9 Lich.js User evaluation numbered responses. 106

B.1 Comparison of recordings from two nodes with identical states. VIII

B.2 Yig Likert Items. XXI

B.3 Auracle Likert Items. XXII

B.4 Co-Located Likert Items. XXIII

B.5 Distributed Likert Items. XXIV

B.6 One of the synths used in Yig performances XXV

D.1 Test code in Lich.js and JavaScript . XLI

D.2 Generative visuals created with Lich.js . XLIII

List of Tables
2.1 Andrew Hugill’s five internet music types. 35

2.2 Weinberg’s comparison between novice and expert IMN systems. 38

6.1 List of Likert item statements regarding Lich.js 105

6.2 Sum and mean of Likert item responses for each participant 107

Chapter 1

Introduction

Chapter 1. Introduction 2

1.1 Liveness, Embodiment and Networked

Performance
Luciano Berio, in a 1983 interview with Roassan Damlonte, said of electronic music:

“With or without new tools and technologies, electronic music as a means for
musical thinking reached a dead end. Moreover, the new tools detached it
even further from the global and comprehensive idée of music making which
is perceived not only by its technical, historical, and expressive terms, but in
contemporary and social terms as well.” (Berio & Dalmonte, 2007)

In contrast, writers such as Philip Auslander and Marc Leman have proposed that outdated

notions of liveness and embodiment are inadequate in the age of mass media, the inter-

net, and mobile technology (Auslander, 2008; Leman, 2008). Social media and the web

have transformed not just the format of an act, but also the fundamental audience. Sites

like Instagram, YouTube and Sound Cloud have become common as 21st century medi-

ums created by increasingly fragmented groups of authors for increasingly fragmented

audiences. Some researchers have argued that newer audiences who have been raised

watching DJs in clubs, playing video games, and who have never known a time before the

Internet, don’t feel the same need for a one to one connection between effort and output

(d’Escriván, 2006; Dean, 2003). An example supporting this is video game streaming and

eSports, which have grown tremendously in popularity in recent years. In 2014 Twitch.tv,

a popular game streaming site, accounted for 43 percent of all live video streaming by

volume, with a reported 55 million monthly viewers (Delaney & Madigan, 2015). In 2015

the League of Legends world championship finals had a world record 36 millions viewers

(Riot Games, 2015). The electronic music industry is also flourishing with the Interna-

tional Music Summit estimating that the industry is worth 7.1 billion dollars in their 2016

report, a 60 percent increase since 2013 (Watson, 2016). This growth is fueled in part by

a steady increase in the popularity of live electronic music events and festivals.

With these developing trends in mind, network music is considered as a unique case

in live electronic music. Electronic music is a popular genre, but networked techniques

and approaches have largely been ignored by the mainstream practitioners. Academic

research regarding the field is also less popular than many other topics. Whilst research

regarding liveness in electronic music has tended to explore the relationship of bodies and

instruments, audience perception, interfaces, and shifting definitions, less theoretical and

empirical study has considered network situations, perhaps given their relative cultural

novelty. Network music has seen many advances since the time of the Telharmonium,

including the invention of the personal computer and the widespread proliferation of in-

ternet connectivity (Rohrhuber, 2007a). These advances have fostered a unique approach

to live electronic music that facilitates collaboration in a field where solo performance

is perhaps more common. Furthermore, the interdependencies, presentations, locations,

and structures of these groups introduce new variables with regards to the perception

of liveness and embodiment for both performers and audiences (Föllmer, 2005; Tanaka,

2006).

Chapter 1. Introduction 3

It is difficult to separate the study of live network music performance from the study

of interfaces. Often these performances employ novel technology to facilitate some form

of relationships between the performers. This thesis explores the relationship of these

networked musicians with their interfaces. It also probes how those interfaces can medi-

ate or encumber the dynamic interactions that the network music often is attempting to

facilitate.

1.2 Research Questions and Themes
The overarching research theme is to investigate the experience of performing music in

networked environments and how to enhance that experience. The key questions of the

thesis are:

1. How do distribution, virtual spaces, communication, and autonomy impact a net-
work music interface and collaboration?

2. What characteristics define a successful live networked music interface and collabo-
ration?

3. Do computer musicians consider interfaces with virtualized environments to embody
those characteristics?

4. Do musicians have a preference regarding co-location and distribution in collabora-
tions?

These questions will be explored through the design and evaluation of three new net-

worked music interfaces, with final conclusions in Chapter 7.

1.3 Contributions
The contributions of this thesis are as follows:

• Three new network music system interfaces, each using a different paradigm for
interface design; one is a 2D modular feedback network instrument, another is a
3D pattern sequencer and the third is a web based live coding language. All the
code is open source and freely available (McKinney, 2012, 2013b, 2014a). Lich.js
can be used by going to chadmckinneyaudio.com/lich. Binaries for Yig, the Fa-
ther of Serpents and Shoggoth have been made available at chadmckinneyaudio.com/
YigAndShoggoth.zip.

• Evaluations of the new interfaces, as well as a novel study regarding co-location and
distribution in network music collaborations

• A collection and evaluation of opinions and thoughts of established network music
practitioners on the issues regarding the medium historically, and to this day.

Chapter 1. Introduction 4

1.4 Relevance
Since the last four years when the initial research for this thesis began, music technology,

especially web and mobile based music technology, has expanded tremendously. New in-

terfaces, systems, instruments, and experiments are directed at wider audiences with a

lower barrier to entry. Specific areas of research such as live coding and mobile device

based synthesizers have seen rapid activity. Furthermore, social media has asserted itself

as an era defining establishment. The ‘meme’ culture of the 21st century fanatically shares

and remixes, dynamically and continuously. While there is active research regarding live

networked music performance, the technologies that research has developed have not

seen such wide adoption. We need to further understand why performers may be inter-

ested in collaborative technologies, but also what complications and issues, technical and

aesthetic, arise out of the use of those technologies. By understanding these relationships,

instruments and interfaces can be better designed to facilitate collaborations by musicians

of varying backgrounds.

1.5 Structure
Chapter 2 examines historic uses of networking technology in musical contexts, and no-

table works using those technologies. This is followed by Chapter 3 where a survey of

veteran network musicians are queried about their ideas regarding liveness in network

music. Subsequently Chapters 4, 5, and 6 each propose a new interface for network music

that addresses some of the issues raised. Chapter 4 presents Yig, the Father of Serpents, a

networked interface for creating synthesized feedback lattices in a two dimensional space.

Additionally this chapter evaluates Yig, the Father of Serpents in a comparative group study

where collaborators use Yig and Max Neuhaus’s Auracle in both co-located and distributed

networks. Chapter 5 presents Shoggoth, which is a pattern sequencer in a three dimen-

sional virtual space, followed by an analysis of reports by two experienced users. Chapter

6 presents Lich.js, which is a collaborative live coding language for music and graphics

using web technologies. This chapter also contains the analysis of an anonymous survey

of Lich.js. Finally, in Chapter 7 the combined results from these studies are analyzed and

conclusions are presented.

1.6 Related Publications
Some parts of this thesis contain material that has already appeared in conference publi-

cations:

Chapter 3 contains material from Liveness In Network Music Performance. In Proceed-

ings of the Live Interfaces: Performance, Art, Music Symposium, Leeds, 2012 (McKinney

& Collins, 2012a).

The initial development of Yig, the Father of Serpents, in Chapter 4, was first described

in Yig, the Father of Serpents: A Real-Time Network Music Performance Environment. In Pro-

Chapter 1. Introduction 5

ceedings of the Sound and Music Computing conference, Copenhagen, 2012 (McKinney

& Collins, 2012b).

The initial development of Shoggoth, in Chapter 5, was first described in An Interactive
3D Network Music Space. In Proceedings of New Interfaces for Musical Expression, Seoul,

2013 (McKinney & Collins, 2013).

The initial development of Lich.js, from Chapter 6, was first described in Quick Live
Coding Collaboration In The Web Browser. In Proceedings of New Interfaces for Musical

Expression, London, 2014 (McKinney, 2014e).

1.7 Related Performances
The three systems presented in this thesis, Yig, Shoggoth, and Lich.js have each seen multi-

ple international (and transcontinental) performances over several years, mainly with the

band Glitch Lich (McKinney, McKinney, O’Brien, & Ingraham, 2012).

1.7.1 Yig Performances
• NOISE=NOISE – January 4th, 2012, London, UK

• Network Music Festival – January 28th, 2012, Birmingham, UK

• TEDxSussex – April 27th, 2012, Brighton, UK

• International Computer Music Conference – September 14th, 2012, Ljubljana, Slove-
nia

• Amersham Arms – October 17th, 2012, London, UK

• University of Florida – October 26th, 2012, Gainesville, Florida, USA

• Pendulum New Music – November 28th, 2012, Boulder, Colorado, USA

• Texas AM – February 5th, 2013, College Station, Texas, USA

• Mills College – March 6th, 2013, Oakland, California, USA

• University of Colorado – April 11th, 2013, Boulder, Colorado USA

• Algorave – April 17th, Brighton UK

• SuperCollider Symposium – May 20th, 2013, Boulder, Colorado, USA

• FaceArt Institute of Music – September 27th, 2013, Shanghai, China

• /* vivo */ – November 26th, 2013, Mexico City, Mexico

• Frost – February 1st, 2014, New York City, New York, USA

• Algorave – April 26th, 2014, Gateshead, UK

• Zoomin’ Night – May 5th, 2014, Beijing, China

• Valuing Electronic Music – June 6th, 2014, London UK

• Algorave – June 9th, 2015, Santa Barbara, California, USA

Chapter 1. Introduction 6

1.7.2 Shoggoth Performances
• Network Music Festival – February 24th, 2013, Birmingham, UK

• University of Colorado – April 11th, 2013, Boulder, Colorado USA

• Slave to the Algorithm – April 13th, 2013, London, UK

• Algorave – April 17th, 2013, Brighton, UK

• New Interfaces for Musical Expression – March 28th, 2013, Daejeon, Korea

• /* vivo */ – November 26th, 2013, Mexico City, Mexico

1.7.3 Lich.js Performances
• live.code.festival – April 19th, 2013, Karlsruhe, Germany

• Algorave – January 5th, 2014, Tokyo, Japan

• Loft 345 – February 20th, 2014, Guangzhou, China

• Soup – April 5th, 2014, Tokyo, Japan

• Algorave – May 10th, 2014, Shanghai, China

• The Shelter – June 5th, 2014, Shanghai, China

• Algorave – July 4th, 2014, Brighton, UK

Chapter 2

Network Music

Chapter 2. Network Music 8

2.1 Network Music
Computer network music has benefited from over three decades of development, includ-

ing the experiments of the San Francisco Bay Area network band pioneers, research into

streaming and latency issues, and the introduction of the OSC protocol (Wright, 2002).

Making an infrastructure suitable for network performance in the face of highly distributed

participants and online security roadblocks remains a challenging task, and many ap-

proaches have been developed to facilitate this type of music composition and perfor-

mance. Programmers and musicians have created wildly different technologies and aes-

thetics, but all of them share the appreciation for the importance of collaboration, com-

munication, and interaction.

Without a clear definition, the use of the term network music can quickly become

vague and meaningless. In their book Networking Foundations Patrick Ciccarelli and

Christina Faulkner define a network as a system that allows communication to occur be-
tween two people or machines (Ciccarelli & Faulkner, 2004). Interconnectivity may be the

essence of network music and any attempt to define it must be formed around that idea.

Be that as it may, the concept of interconnectivity is broad and can easily define ensemble

performances of any kind, including acoustic music. John Lazarro and John Wawrzynek

supply this definition in their paper A Case for Network Musical Performance,

A Network Musical Performance (NMP) occurs when a group of musicians, lo-
cated at different physical locations, interact over a network to perform as they
would if located in the same room (Lazzaro & Wawrzynek, 2001).

This definition, while well formed, is too specific to a particular approach and excludes a

large portion of the network music performances that actually occur. Instead, following

the lead of Alvaro Barbosa, I prefer Jason Freeman’s explanation from his lecture opening

the workshop on Network Music at ICMC in 2005 (Barbosa, 2006):

What I want to say about Networked Music in general is that all music is net-
worked. You can think about an Orchestra as a client-server network, where a
conductor is “serving” visual information to the “client” musicians, or a peer-to-
peer networking model in an improvising Jazz Combo, where there is no one
directing, and the musicians are all interacting, so, any performance context we
can think of in some way there is a network connecting the performers (...). Net-
worked Music with capital N and capital M (the kind we are talking about) is
about performance situations where traditional aural and visual connections be-
tween participants are augmented, mediated or replaced by electronically-controlled
connections.

This definition works well for the general case including the historic examples from the

literature discussed in the following sections, but not entirely for the research discussed

in this thesis. The three systems discussed later in chapters 4, 5, and 6 were all developed

using the band Glitch Lich as a test bed for research. Glitch Lich performances can be

described using Freeman’s definition, although further clarification and specification is

possible. The four key features of an interface designed for Glitch Lich are distribution,

virtual spaces, communication, and autonomy. Glitch Lich performances are commonly

Chapter 2. Network Music 9

distributed, with members having lived across several continents for most of the band’s

history. Communication is a key part of Glitch Lich performances; not just amongst the

performers, but also displaying that communication to the audience. This extends to even

letting the audience join in the public conversation in real–time via twitter. Additionally,

Glitch Lich performances rely heavily on experimentation, exploration, and improvisation.

Notably, Glitch Lich pieces are commonly concerned with creating virtual spaces for these

performances, and using some visual component to convey this virtual space. Electronic

connections form the physical network between the players, but a virtual space allows

for a virtual network to create connections between the players, who are embodied in

this abstracted system. Additionally these virtual spaces are often imbued with a certain

amount of autonomy, often via feedback or using algorithmic and procedural techniques.

This autonomy is also a fundamental part of the network, treated as just another entity,

like the performers themselves. This is where Freeman’s definition fails. To describe

the network music of Glitch Lich, and the research in the following chapters, a different

definition is required. The network music of Glitch Lich is a virtual space which is mapped

to and modulated by relationships between virtual entities, where those relationships are

defined and modified in real–time.

Following are a survey of compositions, installations, events, and technologies related

to network music. It is not exhaustive, but it summarizes the important trends and notable

developments in the field. Afterwards a survey of the published theories and taxonomies

of network music will be presented with examples and critiqued.

2.2 Origins and Early Network Music
Music has been used to bridge long distances for thousands of years. Horn instruments

were very common in ancient times and were used for communicating with herds or

between villages (Jones, 2006). As the instruments developed, the complexity of the

music increased allowing for rich melodies that, as with the Ranz des Vaches (also known

as Kuhreihen), could even be used to call the names of specific cows. Hector Berlioz

famously referenced this musical communication in his programmatic work Symphonie
Fantastique. Berlioz begins the description of the third movement, Scène aux champs,
with:

One evening in the countryside he hears two shepherds in the distance dialoguing
with their ‘ranz des vaches’; this pastoral duet, the setting, the gentle rustling of
the trees in the wind, some causes for hope that he has recently conceived, all
conspire to restore to his heart an unaccustomed feeling of calm and to give to his
thoughts a happier colouring. (Berlioz, Malherbe, & Weingartner, 1900)

To achieve this effect in a concert setting he wrote a musical dialogue between an English

Horn and an offstage Oboe, attempting to create a sense of distance.

Charles Ives, ever the ambitious composer, imagined a scenario much more grandiose

with his unfinished Universe Symphony. The epic symphony was to be his largest creation

Chapter 2. Network Music 10

and he worked on it since before 1915 up until his death in 1954. Ives is said to have

envisioned a scene where

(...) several different orchestras, with huge conclaves of singing men and women,
are to be placed about in valleys, on hillsides, and on mountain tops. (Lambert,
1997)

The score and his notes do not indicate this directly, but the anecdote is attributed to his

secretary Christine Loring (Perlis, 1974).

Figure 2.1: An artist’s depiction of a music performance over telephone in 1891 (Sci, 1891a).

Until the late 1800s it was not possible to transmit sound without simply making it

very loudly. This all changed with the invention of the telephone, of which there is some

confusion and controversy about the history. What is known is that Alexander Graham Bell

did receive the first patent for the telephone with some of his earliest demonstrations of

the technology involving music being sung by participants in other locations (Pasachoff,

1996). As early as 1891 companies like the Long Distance company would pipe music

performances over telephone lines for hundreds of miles to concert halls and homes (Con-

nections, 1891b). By 1909 subscription services were available for playing phonograph

recordings over the telephone by demand (Anonymous, 1909).

Around this time many experiments with electronic instruments were taking place,

such as Elisha Gray’s Musical Telegraph and William Du Bois Duddell’s Singing Arc (Kirk

& Hunt, 1999). It is interesting that one of the very first inventions using electricity to

produce musical tones, and by far the most ambitious, was designed specifically for net-

worked performance. The Telharmonium, developed by Thaddeus Cahill throughout the

1890s and early 1900s, was an impressive machine that used an array of tone wheels to

produce organ like sounds (Holmes & Holmes, 2002). Thaddeus Cahill was a gifted engi-

neer, but also forward thinking and business oriented. Instead of using the Telharmonium

Chapter 2. Network Music 11

for concerts (although this did happen on occasion) Cahill envisioned piping live music

to paying subscribers using the new telephone technology of the era. Thaddeus Cahill

was truly ahead of his time considering that this distributed music service predates radio

broadcasts and is remarkably similar to technologies that we commonly associate with

computers, mobile devices, and the internet. Ultimately the Telharminum proved to be

a commercial failure due to a lack of venture capital and the discovery that the machine

interfered with telephone calls (Burkart & McCourt, 2006).

While telegraph lines were quickly becoming popularized and incorporated in broader

infrastructures, many saw the possibility for another technology to revolutionize commu-

nication and subsequently music (Fahie, 2011). The so-called “wireless telephony” , which

is now commonly referred to as radio, had the potential to deliver services similar to tele-

phone connections, but without the burden of connecting to users directly. Beginning with

the early experiments of Heinrich Rudolf Hertz and Nikola Tesla that showed radio broad-

cast viability, several ambitious inventors embarked on a race to invent the first functional

prototypes for the broadcast and reception of communications via radio waves. Several

attempts had been able to attain limited results, but in 1906 it was Dr. Lee De Forest

who held the first public radio broadcast of music where he read the news and played

phonograph recordings of a wide range (Adams, 2011).

Radio broadcasting technology transformed entire industries and the culture at large

as it was assimilated into large scale infrastructures. As with any technology, the pro-

liferation was followed by the experimentation of artists and musicians looking for new

and unexpected ways to use it. John Cage’s Imaginary Landscape No. 4 (1951) begins to

show some of the characteristics of network music that moves beyond simple broadcast

(Nicholls, 2002). 12 transistor radios are each controlled by two performers following a

score comprised of a set of parameter charts created using the I Ching. The execution

relies on the coordination of the performers sharing radios and the sound of the piece

presents a group texture that moves throughout the ensemble.

Fifteen years after writing Imaginary Landscape No. 4 Cage expanded on this idea in

Variations VII (1966) by using not only radio, but television and ten telephone connections

from around New york including the New York Times press room, a German restaurant,

and Merce Cunningham’s studio (Cunningham, Kluver, Tudor, Moog, Coker, Kompfner, &

Riley, 2008). This expansion beyond just radio station broadcasts opened a new dimen-

sion for exploration. Not only was just music or speech being used; instead other spaces

themselves were being melded together in a Marshall McLuhan type mass media wash.

Cage was not the only composer who saw the potential that distance and space can

play in music. Alvin Lucier composed the work Quasimodo the Great Lover (1970) (Nyman,

1999) as an exploration of communication over long distance. Here is the full score:

Quasimodo the Great Lover (1970) – for any person who wishes to send sounds
over long distances through air, water, ice, metal, stone, or any other sound car-
rying medium, using the sounds to capture and carry to listeners far away the
acoustic characteristics of the environments through which they travel. (Simon,
1980)

Performances feature a relay of microphone and speaker pairs so that whale like sounds

Chapter 2. Network Music 12

can traverse over long distances creating a sense of space as well as the accrued acous-

tic characteristic of the nodes in the chain. Lucier has a continuing interest in the role

that sound plays as an information medium which is illuminated in his previous work Ves-
pers (1968), where performers using Sondols (hand-held echo-location devices) explore

a space by scanning the environment with impulses. Quasimodo, the Great Lover, while

similar to Vespers in that electronic sounds are used to excite ambient acoustics, differs

because the distance traversed is as important as the acoustic phenomena.

Figure 2.2: Max Neuhaus’s illustration demonstrating the signal flow for his work Radio Net
(Neuhaus, 2004c)

Max Neuhaus’s RadioNet (1977) is a behemoth sized work that utilized the United

States’ national public radio (NPR) nation wide circuit to create a two hour long feedback

network that spanned hundreds of miles (Neuhaus, 2004c). There were two hundred

stations involved in the performance, all of which were connected together through tele-

phone lines. For the performance Neuhaus created five closed sub-loops, all of which went

through Washington D.C. Because of the complexity of the system Neuhaus created a self

adjusting mixing system that worked by multiplexing multiple inputs. Higher pitched

sounds were given more fractions per second of time, corresponding to a higher level in

the apparent mix. Listeners were invited to call in and whistle, and in doing so participate

in a nation sized effects feed back loop.

As noted in Indigenous to the Net, the world’s first network computer band, the League

of Automatic Music Composers, began as an extension of the home brew circuit tinkering

that was characteristic of the San Francisco Bay Area in the mid-1970’s (Brown & Bischoff,

2002). Their computers, MOS Technology KIM-1 models, were modest with only 1 kilo-

byte of memory and which could only be programmed using assembly language. The

League of Automatic Music Composers created interactive programs by directly soldering

connections between computers and writing programs which would listen and transmit

data on these lines. The network was fragile and error prone. It was also difficult to set

up as all the connections had to be re-soldered each time the band rehearsed (Brown &

Bischoff, 2002). Although beginning with modest machines according to modern stan-

dards, the group was able to create rich and complex compositions. Each performer’s

computer would take an input, use it in some way, and create an output. The analysis

of the input signals, and the nature of the output is completely individual to each of the

Chapter 2. Network Music 13

Figure 2.3: The League of Automatic Music Composers (Perkis, Horton, and Bischoff, left to right)
performing at Ft. Mason, San Francisco 1981 (Brown & Bischoff, 2002).

members (Bischoff, Gold, & Horton, 1978).

In what can be seen as a natural evolution of the technology, the spiritual successor to

the League of Automatic Music Composers, the Hub, utilized a server based system. This

system, from which the Hub claims their namesake, provided for a standardized interface

for connections between members with varying computer models and shared memory

for the ensemble. The hardware for the first hub initially used the same KIM-1 as the

League of Automatic Music Composers. The important distinction is the configuration of

the ensemble shifted from peer-to-peer to server and client. After the first KIM-1 Hub

the group upgraded to a setup that included two computers with expanded power and

memory to support the six person ensemble. In an online interview for the Networked

Music Review Scot Gresham-Lancaster noted that,

From the period of the first HUB gigs in 1985 until 1990 we used two Synertek
6502 based single board computers that talked to each other over RS-232 at 300
baud. We all had a shared scratch pad of memory that we could retrieve and alter
numbers from 0-255. A whopping 1 K of memory was all we had. (Thorington,
2007)

Even though the Hub’s first public appearance was a trans-site performance, their work

has tended to deemphasize the importance of the distance between the performers. As

Chris Brown noted of the Hub “the band itself was always far more interested in the as-

pects of performer interactivity, algorithmic complexity, and the web of mutual influence

that the network provided. The fact that the chamber could be expanded in distance was

Chapter 2. Network Music 14

not entirely irrelevant, but never really the point.” After several years of using the twin

Synertek configuration, the Hub changed their setup by switching to a Musical Instrument

Digital Interface (MIDI) based system. This change allowed for an even more universal

interface for the computers as well as simpler network maintenance. This shift was at

the cost of a change in the configuration of the network. There was still a kind of server,

an Opcode Studio 5 MIDI interface, but the interface only served the role of routing in-

formation between users as well as imposed the limitations on data formatting that is

characteristic of MIDI. What was lost was the shared memory of the network, and subse-

quently changed the fundamental way that the hub created its music (Perkis, 1999). In

1998 the group officially disbanded noting a lack of enthusiasm from years of dealing with

technical problems and complex setups. This hiatus did not last as they later reformed and

continue to give performances around the globe.

2.3 Telepresence
2.3.1 Early Telepresence and Art

Telepresence has interested researchers, businesses, musicians, and artists for decades.

There has been tremendous research dating back to the late 1950s on how to create some

form of presence at a distance using electronics (Fisher, 1991). Initially these experiments

were very simple, such as moving a camera using a head mounted display, the exploration

of remote environments in a “virtual safari”, or the simulation of driving through Aspen,

Colorado using camera stills and a touch screen. Even before these developments artists

were experimenting with how presence and authorship can be stretched or redefined using

telegraph, telephone and radio technology. Since as early as 1919 artists have embraced

the telegraph as a unique medium for communication. The Dadaists Richard Huelsenbeck,

Johannes Baader, and George Grosz sent this telegram in reaction to Italian soldier and

writer Gabriele D’Annunzio’s invaded and anexed Fiume (now called Rijeka):

Please phone the Club Dada, Berlin, if the allies protest. Conquest a great Dadaist
action, and will employ all means to ensure its recognition. The Dadaist world
atlas Dadaco already recognises Fiume as an Italian City. (Kac, 2005b)

Telegrams continued to be employed by artists well into the century by artists such as

Marcel Duchamp, Robert Rauschenberg, and On Kawara.

With the proliferation of telephone connections artists found another medium. The

Bauhaus painter and photographer László Moholy-Nagy sought to prove the validity of

intellectual motivations in the creation of art by ordering the fashioning of three paint-

ings over a phone call for his Telephone Pictures (Galenson, 2009). Moholy-Nagy was

greatly influenced by constructivism, as evidenced by his call to a sign factory and not

another painter, and his method foreshadows digital techniques by using a grid of pixels

and instructing the order similarly to playing chess by correspondence. This approach

was echoed decades later in the Art by Telephone exhibition in the 1960s which featured

works that were created after verbal instruction by artists over the telephone (Kac, 2005b).

Chapter 2. Network Music 15

Other artists also saw the potential for new a expression with communication technology.

In 1966 Max Neuhaus’s first network piece, Public Supply mixed together incoming phone

calls to a radiostation (Neuhaus, 2004b) and in 1971 Richard Teitelbaum transmitted his

brain waves by telephone to manipulate jumping beans in his work Alpha Bean Lima Brain
(Rosenboom, 1976; Rohrhuber, 2007b).

In the 1960s the concept of Mail Art explored the transmission of the artwork itself

through the postal service. Ray Johnson along with his New York Correspondence School

institutionalized mailed artwork and soon members of the Fluxus movement were experi-

menting with the genre which persists to this day (Saper, 2001). Continuing in this vein,

Fluxus associated artist Paulo Bruscky merged his Xerox performances with mail art when

he started creating works using Fax machines in the 1980s (Osthoff, 2005).

Soon televisions would be commonplace in households and satellite could be used

to transmit information across the globe to millions of people. Nam June Paik had an

ongoing interest in using satellite feeds in his video art. His first work in this vein, Global
Groove (1973) is a psychedelic collage of video and audio including performances from

John Cage, Merce Cunningham, Allen Ginsberg, and Charlotte Moorman lasting thirty

minutes and broadcast by WNET-TV (Paik, 1997). His subsequent satellite works Good
Morning Mr Orwell (1984), Bye Bye Kipling (1986), and Wrap Around the World (1988)

would greatly expand in duration and included live performances from a wide array of

musicians, poets, and artists including David Bowie, Laurie Anderson, Oingo Boingo, a

Brahms concert, and a Punk Rock show (Harris, 2011; Kac, 2005a).

Connecting together with other people across the world became increasingly easier

with the advent of the internet age. Internet users frequented chat rooms, visited websites,

and played online games. The technology fosters interactivity instead of just broadcast and

in doing so opens up a vast new territory for exploration by musicians and artists. Eduardo

Kac created some of the earliest internet works with his installations Ornitorrinco in Eden
(1989 – 1994) (Kac, 1996) and Rara Avis (1996) (Kac, 1997). In Ornitorrinco in Eden
Kac, with some help from Ed Bennett, created a mobile robot with a mounted camera

and interactive controls. Users could call a certain phone number and use their telephone

keypad (dial tones were translated into movement commands) to move the robot through

the space. The footage taken from the robot’s camera was then streamed over the internet

for the public to see. Rara Avis was similar to Ornitorrinco in Eden because it combined

internet technology with robotics, but the specifics of the implementation differed. The

robot used was fashioned to appear similar to a macaw, where the eyes were actually two

cameras, and it had both a microphone and speaker for audio. A “virtual reality headset”

was used to allow participants in the venue to see the atrium with stereoscopic vision from

the point of view of the bird and allowed for the control of the robots viewing direction.

Audio and video from the robot was streamed over the internet, and viewers online could

participate by sending audio to the bird’s speaker.

Chapter 2. Network Music 16

2.3.2 Performance Streaming Over the Internet

In 1993, at the University of Southern California, the first experiments with music perfor-

mance utilizing internet connections streaming audio for collaboration by distance were

taking place (Schooler, 1993). Their approach is remarkably similar to the research still

happening now in the field, indicating perhaps a fundamental problem that will only me-

diated by advances in broadband speed and perhaps never fully conquered because of the

laws of physics. The performers (playing a Haydn piano trio) and audiences were spread

across several sites from California to Washington D.C. User Datagram Protocol (UDP)

packets were timestamped and sent over the network for both audio and clock synchro-

nization. Lower rate audio streams were used to save bandwidth and buffering was used

to prevent jitter. Despite these measures the delay was still quite noticeable (80 – 350 ms)

and the researchers noted that the performance was novel, but contrived. Their sugges-

tions again foreshadow much of the research in the field, stating that latency is not an

anomaly and requires acceptance suggesting that new music will need to be written and

new approaches developed to work specifically with this medium.

In the titled paper Network Audio Performance and Installation Atau Tanaka describes

his experiments with networked audio and control data during the years of 1994 through

1999 (Tanaka, 1999). His approach was programmatic, using off the shelf teleconferenc-

ing equipment and software. It demonstrated what was possible at the time without access

to custom built software or dedicated research connections. The research mainly focuses

on bi–directional performance settings where he noted that latency and divergence were

an eventuality of the medium and should be accepted, and that the video functioned better

at lower resolutions, which facilitated higher frame rates.

Researchers at the University of Geneva conducted similar streaming studies from 1996

through 1999. Their research was more concerned with rehearsal and included an orches-

tra, a conductor, and video streaming in addition to audio (Konstantas, Orlarey, Gibbs,

Carbonel, Moulin, Lyon, & Augustin, 1997). They achieved lower delays (audio 31 ms,

video 81 ms) utilizing compression on the streams and higher bandwidth connections, but

their distance scale was about a fourth the distance of the USC tests (Konstantas, 1998;

Konstantas, Orlarey, Carbonel, & Gibbs, 1999). The analysis of their results concluded that

latency was still problematic, but that the technology could provide for some worthwhile

opportunities and cost savings.

With the development of the high-performance research networks in the mid-to-late

1990s, new studies were called for that could test the limits of the new connections’ ca-

pabilities (Paper, Council, Bargar, Church, Systems, Keislar, Fish, Pavo, Microsoft, & Pen-

nycook, 1998). The first Wide Area Network (WAN) study was conducted in 1999 by

McGill University which held a swing band concert that was broadcast to an audience at

New York University. Their methodology concerned streaming high quality AC-3 audio

(encoded Dolby 5.1) and MPEG–1 video and only required single direction transmission,

having forgone the performer separation in the earlier noted studies. They used a mixture

of Transfer Datagram Protocol (TCP) messages for control information regarding streams

and User Datagram Protocol (UDP) for the actual stream (Postel, 1981, 1980). The ini-

Chapter 2. Network Music 17

tial conditions introduced a 20 second buffer to remove jitter and request lost packets

which worked without interruption. Upon lowering the buffer to three seconds the au-

dio remained consistent, but the video streamed received several interruptions. The next

year the same research group conducted a follow up study similar to the previous, but that

streamed 12 channels of uncompressed 24bit/96kHz Pulse-code Modulation (PCM) audio,

but without video. The audio was received at the University of Southern California and

mixed there to produce the final product (Oliver, Pierce, & Shannon, 1948; Cooperstock

& Spackman, 2001).

Soon after the McGill experiments, the Center for Computer Research in Music and

Acoustics (CCRMA) at Stanford began developing new techniques and software to take

advantage of the burgeoning high speed networks for full duplex bi-directional multi–

channel audio streams (Chafe, Wilson, Leistikow, Chisholm, & Scavone, 2000). Their goal

was to develop an approach that would remove as many bottlenecks from their system

as possible and achieve the closest possible approximations to the latency a musician is

accustomed to working with. They did not use compression, which increases latency

for the sake of bandwidth, because they had a high bandwidth test connection. They

also implemented a multithreading scheme and several parameters for fine tuning the

connection, such as adaptable packet size, fragment size, circular buffer size, threshold,

and thread priority. Their final tests concluded stereo audio streamed with 75ms round

trip time (RTT) across the United States from their site in California to two facilities, one

in New York and another in North Carolina.

On June 13, 2002, McGill and Stanford held the first transcontinental jam session

utilizing high quality audio and video over research network connections. While previous

uses of video and audio were unidirectional, this performance attempted to create a shared

space where video projection would bridge the two separated ensembles into a single

virtual room. Audio and video did not maintain synchronicity, and the researchers claimed

that because the intermodal latency between the performers’ sense of sight and vision was

less than 30 ms that it was tolerable. They were able to achieve a minimum latency of

50 ms for audio and 80 ms for video during (Woszczyk, Cooperstock, Roston, & Martens,

2005).

The University of Southern California, noting the developments made by Stanford and

McGill, developed their own technologies for what they called “Distributive Immersive

Performance” (DIP). They referenced the McGill and Stanford collaboration’s lack of mul-

timodal synchrony and created their own system which sought to create, initially, unidi-

rectional performances with audio and video synchronicity, over 16 channels of 24bit/48

khz audio, and ambient acoustic emulation of the performance space (Sawchuk, Chew,

Zimmermann, Papadopoulos, & Kyriakakis, 2003). Similar work continued subsequently

by these groups as well by others. Notable studies include the multi–user investigations at

the Technische Universität Braunschweig utilizing client/server architecture, the several

detailed studies on performer latency thresholds run by USC, Alexander Carot’s work on

SoundJack, and CCRMA’s development of JackTrip (Gu, Dick, Noyer, & Wolf, 2004; Gu,

Dick, Kurtisi, Noyer, & Wolf, 2005; Kurtisi, Gu, & Wolf, 2006; Chew, Sawchuk, Tanoue, &

Chapter 2. Network Music 18

Figure 2.4: Distributed jam session between Stanford and McGill (Carôt, 2004).

Zimmermann, 2005; Zimmermann, Chew, Ay, & Pawar, 2008; Carôt, Krämer, & Schuller,

2006).

Internet speeds consistently increased throught the 1990s and 2000s enabling lower

latency and higher quality Voice Over Internet Protocol (VoIP) services such as Skype

(Microsoft, 2014) and Google Voice to a broader user base (Networks, 2011). The prolif-

eration of these services makes telepresence performance possible for anyone with a com-

puter and an internet connection. Pauline Oliveros, Scott Gresham-Lancaster, Sam Ashley

and others have demonstrated the viability of the medium, although it is inherently imper-

fect because of the lack of bandwidth, speed, and Quality of Service (QoS) features char-

acteristic of Internet2 and other high performance networks (Gresham-Lancaster, 2007).

2.3.3 Strategies for the Acceptance of Latency and Networking Idiosyncrasies

Much research has been conducted towards investigating the issues that latency presents

to instrumentalists when streaming audio as well as strategies to cope with this latency in

performances (Barbosa, 2003). Often solutions favor research grade connections between

Chapter 2. Network Music 19

sites, providing lower latency, but also not offering a solution that is widely available

to the public (Xu & Cooperstock, 2000; Schroeder, Renaud, Rebelo, & Gualda, 2007).

Given the fundamental laws of physics, there are certain distances which produce latencies

that no amount of technological advance can overcome. This latency creates a distinct

separation amongst the performers, between the performers and the audience, as well as

possibly amongst the several audiences. Attempting to perform traditional music given

these factors cannot result in a traditional performance. Because of this, other researchers

such as Atau Tanaka advocate that the medium has inherit temporal characteristics that

should be accepted and explored instead of mitigated (Tanaka, 2006, 2003; Chafe, 2009).

Tanaka notes:

Transmission delays will be considered a hindrance as long as we try to super-
pose old musical forms onto the network. Rather, a new musical language can be
conceived, respecting notable qualities of the medium, such as packetized trans-
mission and geography independent topology. These features can be said to define
the “acoustics” of the network, a sonic space that challenges existing musical no-
tions of event, authorship and time (Tanaka, 2000).

Several of Tanaka’s works have looked towards methods for this acceptance, notably his

work with Kasper Toeplitz on Global String, a networked sound art installation. The in-

stallation comprises of a steel string that is fastened to the ground and stretched across

the space towards the ceiling. Physical vibrations are converted into digital information

and sent across the internet to another site with another cable. Software synthesis uses

the excitations of the cable to activate a locally synthesized digital string emulation with

the length of the distance measured (Tanaka & Bongers, 2001).

Researchers at CCRMA devised a similar solution to this problem in 2002 where they

used the inherit latencies in a network to synthesize a plucked string (Chafe, Wilson,

& Walling, 2002). The Karplus–Strong algorithm is a common one dimensional Waveg-

uide algorithm that produces surprisingly rich results from a simple delay line and filter

(Karplus & Strong, 1983). The research used audio feedback in the network with excita-

tions to create harp like sounds that sonified the distances of network nodes, treating the

delay as a resource as opposed to a problem. The same group went on to develop tech-

niques for using comb filters in a network to create network based reverberation (Chafe,

2003). Research between the Sonic Arts Research Centre (SARC) at Queen’s University

Belfast and CCRMA has extended on these experiments utilizing the longer delays between

San Francisco and Belfast (approximately 130 milliseconds) to produce interlocking rhyth-

mic music (Renaud & Caceres, 2010). A similar experiment consisted of a performance of

Terry Riley’s monumental minimalist work In C using the same feedback locking technique

to synchronize two distributed groups, one at Stanford and other at Peking University in

China (Cáeres, Hamilton, Iyer, Chafe, & Wang, 2008).

Jörg Stelkens also approached the issue of latency with an optimistic attitude in his

peerSynth software. Recognizing that the kinds of connections used by McGill and Stan-

ford would not be available to most musicians, Stelkens created a patching system that

allows the users to map network latency as a modulator onto a number of different synthe-

Chapter 2. Network Music 20

sis parameters (Stelkens, 2003). The resulting music is naturally divergent for the musi-

cians while participation is still codependent and presents a unique performance medium.

While most of this type of research looks to incorporate latency as a musical resource there

have been some efforts to completely eliminate latency using predictive techniques. Mihir

Sakar combined machine listening and predictive modeling with distributed tabla perfor-

mance to effectively eliminate latency completely. Because tabla music works within a

highly structured framework, predicting possible future actions is simpler than in a more

open genre, and incorrect decisions will still fall within a narrow range. In his system two

performers in different locations played with a locally synthesized tabla that is driven by a

predictive model based on what the performer on the other end is currently playing. The

result is naturally divergent because the models make occasional mistakes. Reportedly the

performers felt as if playing with another musician as if they were in the same room, albeit

with some idiosyncrasies (Sarkar, 2007).

Figure 2.5: One installation of Stelarc’s Internet Ear (Stelarc, 2011).

Internet Ear is an installation by Stelarc that uses a softcast of his actual ear on arm,

with an implanted microphone that is attached to the internet, installed at two locations

(Stelarc, 2011). When visitors speak a speech recognition program interprets their speech

and attempts to repeat it. The microphone in the ear then sends that audio over the

internet to another location, which could be picked up by the speech recognition software

there, or also commented on by visitors in the other location. This results in a chaotic

wash of voices and feedback, with the distance between the installations having as much

of an impact on the resulting sound as the two installation spaces themselves.

Chapter 2. Network Music 21

2.3.4 Collaborative Composition and Jamming

Throughout the 1990s and 2000s many other approaches were being developed to fa-

cilitate network music. The previous efforts mentioned focused on the real-time perfor-

mances of instrumentalists, but many other methodologies explored asynchronous, non-

real-time, or virtual instrument collaborations. NetJam, dating back to 1990, is an early

example where users could instigate collaborations via an e-mail list to collaboratively edit

data files (in the form of MIDI files, Max patches, or PostScript files) on an anonymous

File Transfer Protocol (FTP) server (Latta, 1991a, 1991b). A “Read Me” file was placed

next to the data file allowing for a running dialogue on the direction of the piece.

In 1994 ResRocket began as a similar project to NetJam, where contributors posted

sound files to an FTP server as well as contributed to the continuing conversation on their

mailing list (Notes from the NetJam Project, 2004). By 1995 the virtual band claimed

600 members, who named the band ResRocket by voting in a poll of ten randomly gener-

ated names. Two of the users developed an online MIDI networking program and offered

their service along with a new website for a monthly subscription fee. After investors be-

came involved the project soon collapsed. Faust Music Online, created by Sergi Jordà in

1997, was another program similar to the NetJam’s asynchronous collaborative composi-

tion paradigm. Instead of pop or rock songs Faust Music Online was designed to create

experimental electronic music for users of varying backgrounds (Jordà, 1999). The inter-

face was mouse driven GUI allowing users to manipulate and store proprietary score files

in an online database which allowed for recursive editing with history. Only these score

files, and no audio was ever passed between programs and initially it did not allow for

real–time interactions between performers (Jordà, 2002).

Towards the end of the 1990s these type of collaborative online programs became more

common. Rabiscas and Cordas (2002) were java programs that allowed for real–time MIDI

performances utilizing a client server architecture, while Georg Hajdu’s Quintet.net used

Max/MSP to achieve similar results (Fernando Lindner Ramos & Manzolli, 2003; Hajdu,

2004). Andrew Brown’s jam2jam software takes influence from previous work such as

FMOL to allow for real–time network collaboration using generative techniques. Local

and distributed ensembles use the jam2jam software which only networks control data

circumventing many of the issues related to audio and video streaming (Brown, 2010).

A newer trend in commercial software is to allow for peer-to-peer audio and possibly

video streaming between users. Instead of attempting to reduce latency below detectable

levels, the latency is instead made a factor of metric division. Programs like NinJam,

eJamming, and Digital Musician Net offer varying features such as chat, video, and social

networking. They argue that the metric based delay is an acceptable caveat for their users

(Cockos Incorporated, 2004; Ninjam, 2010; GMBH, 2012; Kleimola, 2006). Using this

technique multiple people can participate in a near real–time jam or active collaboration

using real and/or virtual instruments depending on the software implementation. The

music tends to be rhythmic with a regular pulse, yet it generally lacks sudden changes

because of the increased temporal distance between the users.

There has been some interest in using network music as an educational tool and for

Chapter 2. Network Music 22

Figure 2.6: Screen capture of a configuration window in Faust Music On Line (Jordà, 1999).

novices. Traditionally these systems have been made for technologically adept musicians.

Systems like the networked version of Drumstep or the recent CODES seek to widen the

user base beyond the current niche groups (Bligh, Jennings, & Tangney, 2005; Miletto,

Pimenta, Bouchet, Sansonnet, & Keller, 2011; Pimenta, Miletto, Flores, & Hoppe, 2011).

Both of these systems allow multiple users to collaborate on a piece of music through

a simple iterative editing process that happens in near real–time. By simplifying the in-

terface and utilizing more popular styles in a loop based format, users with little or no

musical background can quickly begin collaborating in a group effort. Similarly, Smule’s

AutoRap phone application allows for networked freestyle rap battles utilizing auto–tune

and rhythmic manipulation (Smule, 2014). Potential contenders invite their friends to a

battle and the software manipulates and mixes the two performances into a final track for

sharing.

2.4 Interactive Music in the Browser
During the 1990s internet connections proliferated into homes and businesses across the

globe (Ryan, 2010). Browsers and the websites they visited became increasingly sophis-

ticated with more in depth interactivity and deeper content. The introduction of new

technologies like Java, Javascript, Shockwave, Flash, Quick Time and Real Audio allowed

for web developers to create complex sites that went beyond the simple display of in-

formation (Wöhrmann & Ballet, 1999). By the late 1990s websites such as Cathedral by

William Duckworth were being made that could only be described as an experience (Duck-

Chapter 2. Network Music 23

worth, 2001). When Cathedral went online in 1998 it was a unique destination because

it took the interactivity of the available technologies and created a rich audio and visual

environment where the users could explore and interact with sound in an intuitive but aes-

thetic way (Duckworth, 1999b). Previously websites might provide a background song or

sound effects when the mouse hovered over certain items. Cathedral allowed for user ma-

nipulation of sequencing elements in addition to simple playback allowing users from any

background to experiment with approaches that in the past would require special software

and expertise, but also with a dramatic and aesthetic presentation (Duckworth, 1999a).

Soon after Cathedral went online a very different website named Integer hosted a network

performance where users dictated the playlist of a radio by selecting tracks in a browser.

The performance brought in large numbers and the site recorded 35,000 clicks during the

22 minute performance by almost 500 unique visitors (Iber, 1999; Tanzi, 2001). A similar

approach was taken by Seionshin Yamagishi and Kohji Setoh in their work Variations for
WWW which took user input from a website and used it to create variations on a melody

which was being broadcast by audio online (Yamagishi, 1998).

Figure 2.7: Screen capture of nm.81 by Netochka Nezvanova (Föllmer, 2005)

In the late 1990s Rebekah Wilson (and possibly other programmers and artists col-

lectively) using the pseudonym Netochka Nezvanova and other associated names such as

“punktprotokol” and “0f0003” created a stir on the internet through disruptive posts in

mailing lists but also because of the interesting software that the identity was putting out

(Mieszkowski, 2002; Nezvanova & Föllmer, 2002). The first programs released under the

name included 0f0003 propaganda and b1257+12 (both released in 1998) facilitated the

creation of multimedia works using algorithmic techniques. Soon after in 1999 she/it/they

Chapter 2. Network Music 24

released m9ndfukc.0+99 and k!berzveta.0+2 which were programs written in Java that

interpreted network data and were likely precursors to the transmediale award winning

nm.81. nm.81 was an experimental web browser that rendered html code into a genera-

tive audio and visual environment, somewhat similar to Cathedral although more abstract

(Cramer, 2005; Nezvanova, 2000).

Two artists using the moniker [The User] developed a project throughout the early

2000s to utilize the unique acoustics of an abandoned grain storage facility in Montreal.

The project Silophone invited participants to visit a website or call by phone, where they

could submit sounds to be amplified through the space (McIntosh & Madan, 2012). A

microphone would record the resulting transformation and broadcast it back over the in-

ternet to create a new kind of site specific, yet network–based installation. To date 17,115

different sounds have been submitted online which accounts for a diverse collection of

sound effects, music, speech, and sound art. The installation differs from the previous

examples in that it merged a real space with a virtual site, creating a synthesized hybrid.

In 2004 another online sound piece named Radio Astronomy was coordinated by the art

group r a d i o q u a l i a with several radio telescopes throughout the world. The scale of

the work is massive when considering the literal distances involved. Radio telescopes in

Hawaii, Florida, and Irbene capture signals transmitted by distant planets and stars and

then converted the mix into an audio signal which was broadcast by a radio station in

New Zealand and online (Hyde & Harger, 1998; Astronomy, 2004). The resulting sounds

have striking similarities to many experimental electronic pieces and fused the realms of

art and science, much like Alvin Lucier’s Sferics (1988) where he recorded and amplified

ionospheric disturbances in the Earth’s atmosphere (Weiss, 2008).

Phil Burk began working on JSyn and Transjam during the late 1990s and throughout

the 2000s, which have been used as the technological framework for several works. JSyn

is an audio API written in Java on top of a C based browser plugin (although recently he

released a version that no longer requires the plugin) that enables developers to synthe-

size audio in an Internet browser (Burk, 1998). Transjam is a client/server architecture

for facilitating group collaboration, accounting for locking of edited data and maintaining

of user groups (Burk, 2000). Burk’s test program Webdrum (2000) utilized the technolo-

gies to allow for visitors of his TransJam site to collaborate together creating drum loops

over the internet (Burk, 1997). Subsequently, the Hub members John Bischoff and Chris

Brown used these technologies to develop the works Aperture (2003) and Eternal Network
music (2003), respectively, that allow for sonic exploration and collaboration in a browser

(Bischoff, 2003; Brown, 2003). The two works do not have very developed or detailed

user interfaces. Their approaches were decidedly more experimental than Webdrum and

the contributions of other users were easily heard as well as notable on screen. Soon after

Aperture and Eternal Network Music Max Neuhaus directed the creation of Auracle (2004),

which was built using JSyn and TransJam with help from Phil Burk, Jason Freeman, C.

Ramakrishnan, and Kristjan Varnik (Neuhaus, 2004a). Visitors to the site can log in and

join others in a group “jam” where the voice is used to create gestures which are analyzed

to create control data. This control data is then sent to a central server and broadcast to

Chapter 2. Network Music 25

the network to control a software synthesizer. None of the actual audio from the voice is

transmitted, instead 43 parameters including pitch and the statistical analysis of emotion

were fed into a neural network for projecting changes onto a three dimensional parameter

space for controlling the synthesizers (Freeman, Varnik, Ramakrishnan, Neuhaus, Burk,

& Birchfield, 2005). The graphical interface provides a visualization of the last five vocal

gestures that the users in the network have created, where amplitude, pitch, and time are

mapped (Ramakrishnan, 2004).

Auracle collaborator Jason Freeman went on to create Graph Theory (2006) which

takes a very different approach. There is no group collaboration and instead the user is

presented with a clean interface depicting a graph of short repeated cells. The only thing

available for the user to the control is the direction of traversal through the graph (Free-

man, 2005, 2007). While sparse, the site allows the visitor to explore the relationships of

individual figures in a crafted piece that is evocative of Morton Feldman’s string quartets.

The work is also notable because it uses only a few violin samples to create all of the cells

and forgoes the synthesized approach of many of the previously mentioned works. The

work is influenced and closely related to the New York Miniaturist Ensemble’s collabora-

tive composition site which let site visitors add or remove notes and musical expression

marking from a single staff system (theory: interfacing audiences into the compositional

process, 2005).

Peter Traub took a very different direction from all the previously mentioned online

works with his quirky ItSpace (2007) project. Traub was interested in the concept of

spaces, both real and virtual, and created an online conceptual sound art installation

(Truab, 2010) utilizing the social network Myspace (Myspace, 2012). Traub created nine

music accounts representing nine objects in his household and uploaded a picture of them

along with a short piece of music created only using that object. The nine objects (metal

bowl, pair of vases, recliner, bainster, wine glasses, shower head, pillow, egg timers, and

folding table) friended each other on the site and other users were invited to create similar

accounts. Traub accounts for at least thirty new accounts that friended each other, creating

a growing network of objects that existed both in real space and in virtual space divorced

from their original intent, but also representative of it.

Batuhan Bozkurt’s Otomata (2011) (Bozkurt, 2011b) and Circuli (2012) (Bozkurt,

2011a) are two recent examples of music created in the browser using some newer tech-

nology, in this case the language Haxe (Ponticelli & McColl-Sylveste, 2008), to create

elaborate generative sequencers. Otomata uses cellular automata type rules to deter-

mine direction changes for cell movement and sounds are created when cells collide with

walls. The simple rules generate surprisingly complex and varied results that continuously

evolve. Circuli sheds the typical sequencer grid and instead uses the collision of growing

circles to produce codependencies and emergent behavior.

A slightly more recent work is Plink by Dinamoe Labs, which is advertised as “a su-

per intuitive multiplayer music experience” (Dinamoe Labs, 2013). In Plink players use

mouse clicks on an endlessly forward marching beat grid to create pentatonic melodies

and sample based drum beats. The only inputs are mouse height, mouse button down/up,

Chapter 2. Network Music 26

Figure 2.8: One possible configuration of circles in Circuli (Bozkurt, 2011a).

and instrument selection. While incredibly simple, the interplay with other players is

immediately engaging.

2.5 Network Music, Present and Future

Trends and Technologies
2.5.1 Laptop Orchestras and Bands

The laptop orchestra is an effort to create an ensemble with the functionality of a tra-

ditional orchestra, but with laptop technology. The Princeton Laptop Orchestra (PLOrk),

which uses an identical laptop and hemispheric speaker setup for their performers has gar-

nered much publicity (Fiebrink, Wang, & Cook, 2007; Wang, 2007), yet they were not the

first. The laptop orchestra, an ensemble originating in Japan, likely held the first perfor-

mance for such an orchestra in Tokyo in 2002 (Orchestra, 2012). Since then many of these

ensembles have been created at other institutions such as the Stanford Laptop Orchestra

(SLOrk) (Stanford University, 2012) and the Boulder Laptop Orchestra (BLOrk) (Univer-

sity of Colorado at Boulder, 2012). Laptop bands such as PowerBooks_UnPlugged and

the Hub differ from these laptop orchestras, which often have a traditional composer and

performer relationships, by encouraging a technical virtuosity among members as well

as shared authorship (Rohrhuber, de Campo, Wieser, van Kampen, Ho, & Hölzl, 2007).

Some bands such as the Birminham Laptop Ensemble (BiLE) or the author’s own band

Glitch Lich go as far as writing reactionary manifestos (Purloined Letters and Distributed

Persons, 2011; McKinney et al., 2012).

Chapter 2. Network Music 27

Figure 2.9: Two players playing Plink online at the same time (Dinamoe Labs, 2013).

2.5.2 Developments in Network Technology

Network music is directly tied to developments in technology, therefore it is important

to recognize these advances in order to begin to understand some of the ways in which

the field will change and grow. One looming change is the transition from IPv4 to IPv6,

which is required to fulfill the growing demand for IP addresses (Li, Jinmei, & Shima,

2007). IPv4 uses a 32bit IP address which only allows for 4.29 billion unique values.

This had been a large enough number to not cause concern, but given the rapid increase

in worldwide internet usage, 4.29 billion addresses has become inadequate. In contrast

IPv6 uses a 128bit address scheme, allowing for 340 undecillion addresses. Many of the

technologies used by network musicians are ill prepared for the change to IPv6 and there

will need to be further developments for a smooth transition. The proliferation of Global

Positioning System (GPS) enabled devices will surely be a valuable resources for network

musicians and net artists (Xu, 2003). There has already been some work utilizing this

technology including the Nomadic Milk project which used GPS to trace routes for milk

delivery, the GPS Beatmap that utilizes global position for audio track mixing (St. Pierre,

Stiles, & Bahn, 2006), and the NoTours Project which uses it to created augmented reality

sound walks (Polak, 2012).

Cloud computing is an interesting development that could have large and lasting ef-

fects. Operating systems like Google’s Chrome OS, which stores most of its information

and applications in a cluster of servers, will make portable devices both cheaper and

smaller, which will benefit the development of music and art by and for these devices

(Buyya, Broberg, & Goscinski, 2011). This could have far reaching implications on issues

related to privacy, data sovereignty, and security (Alleweldt, Kara, Fielder, Brown, Weber,

& McSpedden-Brown, 2012). The so called Internet of Things (IoT) is beginning to take

shape and soon everything in a home or office will be connected to the internet (Hersent,

Boswarthick, & Elloumi, 2011). Hewlitt -Packard has recently announced the Central Ner-

vous System for the Earth (CeNSE) which extends the IoT concept beyond appliances to

Chapter 2. Network Music 28

the entire Earth. The project envisions a vast network of sensors placed in roadsides,

bridges, lakes, oceans, and deep underground which will give a global set of senses to the

internet (Packard, 2009). This massive growth is bound to have repercussions on, and

reactions by, the community of network musicians who will have increasing resources at

their disposal.

Bandwidth and transfer speeds are always a concern in network music. There is con-

tinuing research for new strategies and techniques to increase performance including re-

cent experiments that implement photon Orbital Angular Momentum (OAM) to transfer

2.5 terabits of data per second over wifi (Wang, Yang, Fazal, Ahmed, Yan, Huang, Ren,

Yue, Dolinar, Tur, & Willner, 2012) or research into photonic chips to decrease bottlenecks

caused by silicon processors in network routers(Koka, McCracken, Schwetman, Zheng, Ho,

& Krishnamoorthy, 2010). No matter what advances are made, we are bound by the laws

of physics and the speed of light. Many theories have been suggested to achieve superlu-

minal transfer speeds such as Nimtz’s quantum tunneling experiments (highly disputable),

quantum entanglement (no classical information can be encrypted then decrypted), neu-

trinos (incorrect measurements due to a loose cable), and the existence of tachyons (never

observed and a likely sign that a theory is unstable) (Nimtz, Heitmann, Roy-Brehonnet,

& Jeune, 1997; Marinescu & Marinescu, 2011; Adam, Agafonova, Aleksandrov, Altinok,

Sanchez, & Aoki, 2011; Tipler & Llewellyn, 2007). Barring some striking future develop-

ment, we will someday reach a maximal speed of communication.

2.5.3 Languages, Frameworks, and Live Coding

Network music is often created using specialized languages and software to simplify and

abstract the lower level issues related to the practice. Many programming languages have

audio libraries, but using a specialized language can greatly shorten development time

and prevent repeating established work. CSound is a veteran among computer music lan-

guages with over 30 years of development. The language was not originally designed for

real–time use or networking but there now exists extensions to the language to enable

these features (Boulanger, 2000). SuperCollider was originally developed in the early

1990s but the most recent major revision (SC3) features networking as a core feature.

The language is split into a client/server architecture that allows for modularity and dis-

tributed configurations (McCartney et al., 2016). ChucK is similar to SuperCollider in

many respects, although much younger and without the underlying server/client archi-

tecture (Wang, 2002). Max/MSP and Pure Data are two closely related graphical pro-

gramming languages which allow for development using a patching scheme (Cycling ’74,

2014; Chung, 2013). Assessing differences between programming paradigms is difficult

but there has been some research into the differences between visual data flow languages

and text based languages (Green & Petre, 1996). It has been found that visual program-

ming contributes to a lack of understanding of dependencies and control flow, but can give

the user a better understanding of data flow (Navarro-Prieto & Cañas, 2001). That said,

This research does not assess their use in large projects. Frameworks for developing two

dimensional and three dimensional graphics are often used in conjunction with the pre-

Chapter 2. Network Music 29

viously mentioned audio languages to create multimedia performances and installations.

These frameworks are often simply large libraries written in a pre–existing language such

as Processing which is written in Java (Reas & Fry, 2007), and openFrameworks and Cin-

der which are written in C++ (Perevalov, 2013; Rijnieks, 2013).

Often these languages and frameworks make use of the Open Sound Control (OSC)

(Wright, 2002) protocol to share information between computers and programs. While

powerful, these libraries require a large amount of effort to create some framework for

groups to use. This has led to a proliferation of higher level network libraries and frame-

works such as OSCGroups (Bencina, 2005), OSCthulhu (McKinney & McKinney, 2012),

Benoit Lib (Borgeat, Ballweg, & Romero, 2012), the Co-Audicle (Wang, Misra, & Cook,

2006), and the Republic (J. Rohruber, A. de Campo, 2011) which all serve to simplify

collaboration by building on top of existing technologies. These tools are rich and power-

ful but are difficult to use, requiring some amount of expertise and with varying levels of

stability and operating system support.

Figure 2.10: Live coding band Slub performing with Tidal and Scheme Blocks (Aagaard, 2013).

Live coding, where performance write code to create and manipulate programs in real–

time, is a growing trend in computer music performances. There have been reports of live

coding performances as early as 1986 when Ron Kuivila used Forth in a performance

and subsequently crashed, but not before making “some quite interesting music” (Ward,

Rohrhuber, Olofsson, McLean, Griffiths, Collins, & Alexander, 2004). Live coding is a

fundamentally computer based performance style and for that reason lends itself well

to networking. The information being transferred is small, yet can produce long lasting

results and the time specific parameters for execution are much less restrictive than in a

traditional performance. The practice leads to organic interdependencies and produces

layers of uncertainty which afford unexplored modes of performance, composition, and

Chapter 2. Network Music 30

listening (De Campo & Rohrhuber, 2004)

Unlike audio and video streaming approaches, the sharing of code between users

requires very little bandwidth and adverse effects from dropped packets can be easily

corrected or even ignored depending on the intent of the system design. PowerBooks

Unplugged were early pioneers in merging networking techniques with live coding per-

formances (Rohrhuber et al., 2007). Eschewing the stage to sit among the audience,

members use only the sound produced by their laptop speakers, although sometimes

augmented by an amplified signal for mid and low frequencies, using OSC messages to

share their code among members. Live coding performances have utilized many different

languages and approaches often with an emphasis on honesty and communication with

audiences (Ward et al., 2004).

Because of the difficulty of programming live with traditional compiled languages such

as C++ or Java, a plethora live coding frameworks and languages have been created.

These languages can largely be divided into two sub groups: Languages which are essen-

tially extensions of an existing language, or languages with new live coding specific syntax

and subsequently requiring custom compilers. There are libraries and frameworks in many

of the most popular languages such as Lua (Doornekamp, 2013; Lee & Essl, 2013), Ruby

(Aaron & Blackwell, 2013), Scheme (Sorensen & Gardner, 2010; Sorensen, 2014; Grif-

fiths, 2014), Clojure (Aaron, 2014), C (Heiland-Allen, 2012), SuperCollider (J. Rohruber,

A. de Campo, 2011), and Haskell (Bell, 2011). These frameworks and environments build

upon existing languages providing audio or visual libraries with special functionality for

creating patterns and other generative features. New languages have begun to be writ-

ten that use special syntaxes to attempt to make live coding as easy and fast as possible,

often trading versatility for speed. Two examples of these are The Haskell based Tidal

(McLean, 2011), the SuperCollider based IxiLang (Magnusson, 2011), and Cyril (Moth-

ersele, 2014), written in c++. Tidal utilizes a small embedded language for layout based

pattern generation and manipulation while still allowing for code to be written in tra-

ditional Haskell. IxiLang is written on top of SuperCollider but provides a layout based

syntax for creating melody and drum patterns and also features special functionality for

scheduling and effects routing. Cyril provides a terse Python–like syntax for creating re-

cursive functions for graphics generation. Additionally there have been several live coding

languages written that utilize a visual programming paradigm. These languages such as

Beta Blocker, Scheme Blocks, Al Jaziri, and Texture provide either a highly graphical in-

terface for text based input or even utilize other kinds of input such as a mouse (McLean,

Griffiths, Collins, & Wiggins, 2010; McLean & Wiggins, 2011).

2.5.4 Web Technology and Live Coding

Web development technologies are often used for music and sound art, especially now that

the concept of a web application has become established. Flash and JavaScript are com-

mon solutions because of their simple implementation and ease of deployment, although

Flash is currently being phased out of development (Grover, 2011; Flanagan, 2006). When

a server is necessary, Node.js, which is built on top of Google’s V8 JavaScript engine,

Chapter 2. Network Music 31

provides easy development and can service multiple connections without I/O blocking

(Joyent, Inc., 2012; Node.js, 2012). Sites using the new HTML5 version are becoming

increasingly common. HTML5 fills out many of the shortcomings of traditional HTML by

including tools for graphics, video, geo-location, and audio among others (Pilgrim, 2010).

Programmers already familiar with Processing can easily port their code for the web by

using Processing.js which compiles down to javascript and embeds in HTML5 (Up & Run-

ning, 2012). For 3D graphics, THREE.js (Cabello, 2010) is a popular JavaScript library

for utilizing WebGL scene rendering using a more familiar node scene API. Audio has seen

dramatic improvements with the adoption of the Web Audio API (Rogers, 2013) by several

major browsers such as Chrome, FireFox, and Safari. Web Audio allows developers to read

and write raw audio, utilize built–in audio unit nodes, and even employ FFT analysis, all

from JavaScript and without the need for any plugins.

Browser based technologies are a good choice for collaborative frameworks because

web browsers are common and their development is widely supported with heavily funded

development. The recent advent of web standards such as WebGL (Khronos Group, 2013)

and more recently Web Audio (Rogers, 2013) has led to many early efforts for web based

graphics and audio applications. WebGL and Web Audio are important because they give

developers access to powerful functionality such as OpenGL Shader Language (GLSL) sup-

port and real-time audio synthesis that was previously unavailable. Among these online

graphics and audio applications are several live coding environments. Live Coding is a

natural fit for web development, not just because of WebGL and Web Audio, but also be-

cause of the built in support for text editing in HTML documents and the ability to use

JavaScript as a target language for code generation.

Figure 2.11: Browser based generative visuals in GLSL Sandbox (Fontan & Goberna, 2013).

Before the creation of WebGL and Web Audio, sites like Jsaxus (Brodsky, 2013) and

Flaxus (Ivanoff & Jimenez, 2006) used JavaScript and Adobe Flash to allow users to pro-

Chapter 2. Network Music 32

gram graphics based applications in real–time. The standardization of the Web GL specifi-

cation now allows for 3D accelerated programs to be written entirely inside a web browser.

Sites like livecoding.io (Florit, 2013), Livecodelab (Casa, McDonald, Stutters, & Ryan,

2013), Livecoder (Obermeyer, 2013), WebGL Playground (Samp, 2013), and GLSL Sand-

box (Cabello, 2013) have harnessed this API to create live programming environments

that can be easily accessed from any computer using a web browser. More recently the

Web Audio specification has been developed, but the project is younger than WebGL and is

still undergoing active development and lacks a complete cross-browser implementation.

CoffeeCollider (Yonamine, 2013) is a newer framework that looks to bring SuperCollider

like functionality to the browser. It leverages CoffeeScript for its more elegant syntax while

providing basic functionality for synthesis and sequencing, but does not support graphics

or collaborative programming. Gibber is an early adopter and provides a thorough audio

synthesis environment for live music and graphics programming (Roberts, Wakefield, &

Wright, 2014). Gibber has recently added collaborative sessions, making it one of the best

choices for web based live coding collaborations (Roberts, 2014).

2.5.5 Mobile Development

Mobile devices evolved dramatically in the last 10 years from simple utilitarian phones to

powerful tangible interfaces with internet connectivity. Music has benefited greatly from

this transition, not only because of the obvious music playback capabilities inherent in the

devices, but also because they open up a large design space. Even before smart phones

were developed composers saw the potential for the medium. Dialtones (A Telesymphony)
(2001), direct by Golan Levin with work by several other contributors, is a large scale

piece where the entirety of the audio output is generated by the audience members’ cell

phones. Audience members were asked to register their phone numbers and download

ringtones before the concert. Throughout the performance their phones were called in

sequence (Levin, Gibbons, Shakar, Sohrawardy, Gruber, Lehner, Schmidl, & Semlak, 2001)

generating a naturally spatially diffused music. Greg Shiemer wrote a series of microtonal

pieces called Mandala for the Pocket Gamelan. Control messages were passed between

phones using Bluetooth connections which control chord selection and by swinging the

phones subtle changes in pitch were be achieved (Schiemer & Havryliv, 2006).

The spread of smart phones in the marketplace created a new platform for developers

to target. Stanford built on the Laptop Orchestra concept by creating the Mobile Phone

Orchestra (MoPhO) which utilizes the lightweight, yet powerful technology to create elec-

tronic music where the performers can literally be mobile (Wang, Essl, & Penttinen, 2008;

Oh, Herrera, Bryan, Dahl, & Wang, 2010). Mogees (Mogees Ltd., 2014) is a new prod-

uct with a recently successful KickStarter campaign (Kickstarter Inc., 2014). Mogees that

combines smart phone software with contacts mics and generative synthesis to create a

dynamic system for electronic music improvisation using acoustic sound sources. Simi-

larly Phonotonic is developing Interative Music Battle (Phonotonic, 2014), another mo-

bile phone application and hardware combination. The Interactive Music Battle hardware

consists of a small silicon ball with a gyroscope, accelerometers, and WiFI connectivity.

Chapter 2. Network Music 33

Users manipulate melodies and drum beats by rotating, moving, and throwing the small

ball and the system is designed to be used for collaboration.

Phones are not the only important mobile devices. The tablet computer market was

rejuvenated when Apple released the iPad in 2010. Tablet devices lack the pocket porta-

bility of smart phones, but the larger touch screen displays enable richer interfaces. There

is a rapidly growing collection of commercial music applications designed for tablets such

as the Reactable Mobile application (Reactable Systems, 2014) that utilizes the larger

touch screen on tablets to emulate the larger Reactable tangible controller system (Jordà,

2009). This genre is large and growing with a variety of different touch based interfaces

(Apple Inc., 2014; Google, 2014a; Liljedahl, 2014). While the networking and collabora-

tive components of most of this genre is often limited to track sharing there are projects

such as UrMus (Essl, 2011) that utilize mobile technology in conjunction with networking

to create collaborative touch based interfaces.

2.6 Theory and Taxonomy
Although computer network music has over thirty years of history (and network music

as a whole much longer) it is only recently that researchers have started to develop the-

ories and taxonomies to define and categorize the field. Two such taxonomies demon-

strate some strong overlap; one developed by Alvaro Barbosa in his PhD thesis Computer-
Supported Cooperative Work for Music Applications (Barbosa, 2003) and another by Andrew

Hugill described in his book Internet Music: An Introduction (Hugill, 2005). Both pro-

vide insights for how to categorize the various approaches to network music and yet are

separate in their particular methodologies. Barbosa takes direct cues from the Computer-

Supported Cooperative Work field by presenting a four square cube that emphasizes the

difference in time and place between the users (performers). The four square classifica-

tion is an adaptation of Robert Johansen’s Classification space (although Barbosa refers to

a slightly reworded interpretation from Tom Rodden) which divided software designed for

group use into four distinct categories (Johansen, 1988; Rodden, 1992). The grid is de-

fined in two dimensional space where each axis represents time and location respectively

as a function of proximity. Barbosa defines four classes of network music that fall along

these axes, although not completely segregated in the dimension space, as Co–Located

Musical Networks, Music Composition Support Systems, Remote Music Performance Sys-

tems, and Shared Sonic Environments.

Co–Located Musical Networks are networks where the performers are in the same lo-

cation at the same time, but use some kind of local network connection to produce in-

terdependency. This can include acoustic and electronic instruments in any kind of style,

but the emphasis is on the close proximity of the performers in both space and time.

Performances by the Hub can be categorized as Co–Located Musical Networks. Music
Composition Support Systems allow synchronous or asynchronous collaboration on music

from a more traditional composition–based approach. This can include notation systems

for multiple users and networked digital audio workstations. The type of information that

Chapter 2. Network Music 34

Figure 2.12: Barbosa’s Network Music classifications placed in Johansen’s four-square dimension
space

is shared may differ from program to program, however the emphasis is on collaborating

on a composed piece of music using groupware. NinJam and eJamming are examples of

Music Composition Support Systems.

Remote Music Performance Systems allow for performers to play music from different

locations but in close temporal proximity. This can include anything from audio and video

streaming telepresence scenarios to virtual instrument collaborations. In any scenario,

latency and network behavior is always a consideration. The 2002 distance based collabo-

ration between McGill and Stanford is an example of a Remote Music Performance System.

Barbosa describes Shared Sonic Environments as lacking a specific time scale, using the in-

ternet as a kind of interactive audio realm. This can include sound art installations or

other kinds of audio experiments that draw on networking or the internet for data mining

or control. Stelarc’s Internet Ear could be classified as a Shared Sonic Environment.

Barbosa’s taxonomy uses two fundamentals of physics, time and space, to create a

grid for categorization. Because time and space are so fundamental, this taxonomy is still

useful thirteen years after the original publication. This is impressive when considering

how much the internet and networking technologies have evolved in that time. While

that is true, the taxonomy accomplishes this by using a very high level methodology, and

therefore some network music pieces and systems can be grouped together while having

large differences such as instrumentation, genre, interfaces, and the presence of added

Chapter 2. Network Music 35

visuals.

Music that Uses the Network to Connect Physical Spaces or Instruments

Music that is Created or Performed in Virtual Environments, or Uses Virtual Instruments

Music that Translates into Sound Aspects of the Network Itself

Music that Uses the Internet to Enable Collaborative Composition or Performance

Music that is Delivered via the Internet, with Varying Degrees of User Interactivity

Table 2.1: Andrew Hugill’s five internet music types.

Hugill focuses less on the time and place of network music and more on the specific

techniques employed. His taxonomy is a collection of possible approaches, yet there is

some clear overlap with Barbosa’s classifications. Hugill posits five categories for inter-

net music, though there is the possibility for further developments and expansions in his

framework given new technologies and trends. It is important to note that Hugill uses the

term Internet Music where I and others like Barbosa refer to it simply as Network Music.

It is a subtle distinction, though he does note that this kind of music can and does occur

on local and other kinds of networks besides just the larger internet.

Music that Uses the Network to Connect Physical Spaces or Instruments includes a large

field of music where the collaborators connect to each other via some kind of connection

to transmit data as command information, audio, or video. This includes all real–time

collaborations where the performers are actively engaged with each other either through

a simple audio/video broadcast or more interconnected dependencies. An example would

be the 2002 McGill and Stanford collaboration. Hugill defines Music that is Created or
Performed in Virtual Environments, or Uses Virtual Instruments as a unique group that uses

artificial and synthetic environments for collaboration. This music relies less on specific

communications between users and more on maintaining the illusion of a persistent vir-

tual world. Participants in the virtual world can be human or artificial, allowing for a

plethora of possible configurations of interactivity. Plink is an example of this kind of

virtual environment.

Music that Translates into Sound Aspects of the Network Itself comprises music and often

sound art that uses the network as a source for timing, data, and as an aesthetic resource.

It tends to be concerned with internet culture and attempts to use the internet, or artifacts

of the internet, as metaphor or simulacrum. Global String is an example of this kind of

approach. Music that Uses the Internet to Enable Collaborative Composition or Performance
comprises mostly asynchronous or at least time neutral collaborations focused on crafting

an end product, such as a composition or recording. This category is very similar to

Barbosa’s Music Composition Support System, so similarly Ninjam and eJamming can be

included in this group. With Music that is Delivered via the Internet, with Varying Degrees
of User Interactivity Hugill groups audio visual website content in the form of highly

interactive websites available to the open public with other kinds of online interactive

media. Hugill states that there is an emphasis on short and intense engagement without

the effort for prolonged usage, such as Cathedral.

Chapter 2. Network Music 36

In contrast to Barbosa’s taxonomy, Hugill’s five internet music types are more ad hoc

and without any real fundamental dimensions for categorization. There can be clear over-

lap between these types such as Music that Uses the Network to Connect Physical Spaces
or Instruments and Music that Translates into Sound Aspects of the Network Itself. The five

types listed are somewhat broad, but certainly doesn’t cover every possible configuration

of network music. For example, collaborative live coded performances could possibly be

grouped in as either Music that is Created or Performed in Virtual Environments, or Uses
Virtual Instruments or Music that Uses the Internet to Enable Collaborative Composition or
Performance, yet both of these are somewhat inadequate descriptions.

Figure 2.13: Weinberg’s enumeration of various network configurations

Gil Weinberg took a slightly different approach in his PhD thesis Interconnected Musical
Networks: Bringing Expression and Thoughtfulness to Collaborative Group Playing as well

as his paper Interconnected Musical Networks: Toward a Theoretical Framework (Weinberg,

2003, 2005). In these documents Weinberg presents a collection of architectures and

topologies for the various kinds of Interconnected Musical Networks (IMNs). The largest

category for consideration is whether or not the network architecture is centralized or

decentralized. Centralized networks often function in a more traditional manner, mainly

serving to duplicate traditional modes of performance and interaction. Decentralized net-

works allow for more complicated interdependencies and often the focus of the music is

exploring the ways that those dependencies play out.

Centralized and Decentralized networks can also each be divided into two groups:

Synchronous (real-time) and Sequential (non-real-time). Synchronous networks account

for simultaneous collaboration, allowing for continuous action and reaction, and often the

networking occurs during a performance. Sequential networks on the other hand facilitate

slower interactions, but in doing so bypass many of the problems that plague Synchronous

Chapter 2. Network Music 37

networks. Bandwidth usage can be higher because information disseminated in the net-

work can be uploaded and downloaded over longer periods of time. This allows for high

quality audio, video, or any other kind of important data to be shared. Collaborations that

last over longer periods (days/weeks/months/years) benefit from this approach, and here

the network serves more as a functional tool for composition or development instead of as

an important aesthetic contribution to the resulting music. It should be noted that Wein-

berg’s use of the term ‘Sequential’ may be somewhat misleading. ‘Asynchronous’ would

work better in this context because ‘Sequential’ implies linearity, but this kind of network-

ing does not necessarily have to be so. For example, version control using Git (Loeliger

& McCullough, 2012) or Subversion (Pilato, Collins-Sussman, & Fitzpatrick, 2008) allows

for asynchronous networking that can last over days, weeks, months, and years, but does

not have a linear order of events.

Elaborating on the architectural dichotomies of Centralized/Decentralized and Syn-

chronous/Sequential, Weinberg further accounts for specific topologies of connections be-

tween the various network nodes and the hub (if one is present) as well as the added

complexity of the notion of weighted gates on traffic. Twelve configurations of architec-

tures and topologies are presented with varying amounts of complexity. The Flower, Star,

Stairs, and Wheelbarrow configurations are all possible topologies with varying charac-

teristics, and thusly varying impacts on the flow of information in the network. A flower

configuration is a synchronous topology that contains a centralized hub with nodes in var-

ious configurations where as a Star topology lacks a central hub. Wheelbarrow topologies

are sequential and centralized configurations and Stairs are sequential, but decentralized.

When these topologies are used to enumerate hardware connections, many are well

represented by the usual types of network ensembles such as the Synchronous Decentral-

ized Interaction (Star), or the Synchronous Centralized Interaction (Flower). These two

configurations are common in network bands and ensembles because they allow for trans-

mission configurations that aren’t overly complicated and maximize the effectiveness of

the communication channels in the group. Other configurations such as the Symmetric In-

terdependent (Star) configuration are less resistant to network problems and others such

as the Hybrid generic “Stairs of Flowers” are niche, if not completely theoretical. These

topologies may also define emulated or virtual connections for data flow or progression

of events. In this way many types of topologies can be built on top of a more traditional

framework. Additionally, the frameworks could be expanded easily with other configura-

tions, weights, characteristics, and now, types of devices (mobile, etc..) so it is sufficient to

say that the theory is not holistic or absolute. Nevertheless, it does provide some genuine

insight into the complexities of network configuration and its impact on group dynamics

and aesthetics for network music.

Within his PhD thesis Weinberg also presented an analysis of the design goals for IMNs.

According to his categories, IMNs that emphasize complexity, performance scenarios, vir-

tuosity, long timescales, and experimentation are generally intended to be used by experts

in the field. The systems that are used by groups such as The Hub or Powerbooks Un-

plugged demonstrate these kinds of characteristics and their music is usually presented to

Chapter 2. Network Music 38

Table 2.2: Weinberg’s comparison between novice and expert IMN systems.

Novice IMN systems Expert IMN systems

Emphasize the process and the experience – col-
laboration, creation, or learning. Aimed mainly
at performers.

Emphasize the final product – musical composi-
tion or stage performance. Aimed mainly at au-
diences.

Technology’s main use is to simplify interaction
for players by constraining musical possibilities

Technology’s main use is to create complex and
rich interdependent topologies.

Low floor / low ceiling learning – fast and easy
learning curve but low long- term depth value

High floor/high ceiling learning – pre-required
skills and knowledge, richer longer term learning
value

Designed for short interactions (seconds to min-
utes) in public places.

Designed for long interactions (minutes to hours)
in concerts hall or on-line.

When the system leads to a coherent musical
product, the music tends to be of the popular va-
riety.

Historically, musical product tended to be of the
high-art music variety. Little accessibility to wide
audiences.

smaller and more technically adept audiences. Weinberg suggests that IMNs that empha-

size play, simplicity, short timescales, education, or commercial value are usually designed

for broader user bases and audiences, often with less musical or technical expertise. Wein-

berg differentiates these groups as Novice IMN systems and Expert IMN systems, although

he does not use the term novice disparagingly. In fact he encourages the proliferation and

usage of network technology to increase music education and appreciation amongst wider

audiences. An example of a Novice IMN is Plink, and in contrast the Republic could be

described as an expert IMN. While the terms may not be used derisively, the use of two

categories to represent multiple axes of attributes is too simplistic. There are several exam-

ples that break this dichotomy such as the appropriation of toys in ‘expert’ performances

or the use of incredibly sophisticated software by new users.

Golo Föllmer also sought to adopt a theoretical framework that could account for the

many different approaches to network music. Upon a survey of the field he devised a

slightly complicated multidimensional spatial framework with types and clusters. Föllmer

recognizes twelve unique types of network music that can be plotted in a three dimen-

sional spatial order. He defines the three fundamental dimensions as “interplay with net-

work characteristics”, “interactivity/openness” and “complexity/flexibility” where each is

a continuum of representation in a particular approach (Föllmer, 2005).

Within the twelve groups Föllmer proposes five clusters that reduce and clarify the

topology of network musics. The Forum cluster contains the Discussion Forum, Remix

Lists, and Archive Projects types. Discussion Forums provide support for non–real–time

collaborations, Remix Lists are similar but with a more open network for participants, and

Archive Projects simply provide a repository for storage. Sites like SoundCloud could be

classified in this forum cluster (SoundCloud, 2016). The Game cluster contains the Sound-

toys and Flash/Shockwave Soundtoys types. Soundtoys are interfaces that emulate con-

ventional musical instruments but with limited functionality and repertoire. Flash/Shock-

wave Soundtoys offer easy to use browser based interactivity in place of an instrumental

Chapter 2. Network Music 39

Figure 2.14: Föllmer’s Spatial Order of the Twelve Types of Net Music.

interface. Otomata is an example of a Flash/Shockwave Soundtoy in the Game cluster.

The Algorithm and Installation cluster contains the types for Hypermusic, Real/Virtual

Space Installations, and Algorithmic Installations. Hypermusics are complex soundscapes

that are explored and not performed in a traditional sense. Real/Virtual Space Installa-

tions explore transitions in real and virtual space and Algorithmic Installations explore the

properties of an electronic space. Stelarc’s Internet Ear can be classified as a Real/Virtual

Space Installation, residing in the Algorithm and Installation cluster. The Instrument and

Workshop cluster encapsulates the Instruments and Authoring Software types. Software–

based Instruments and Authoring Software offer higher complexity than the previously

mentioned Soundtoys with higher degrees of control and user interactivity. An example

would be Faust Music On Line. Finally the Performance cluster contains the Network Per-

formance and Staged Projects types. Network performances minimize interactivity by a

larger audience for the sake of utilizing the skills of experienced performers and Staged

Projects contextualize their performance with a kind of libretto or theme. Performances

by the Hub can be classified as a Network Performance in this cluster.

Föllmer’s taxonomy uses three basic dimensions, Interactivity/Openness, interplay

with network characteristics, and Complexity/Flexibility. These are fundamental descrip-

tions of characteristics in network music performances, albeit not an exhaustive collection.

In this way it is like Barbosa’s taxonomy, using simple dimensions to demonstrate basic

relationships. However, Föllmer takes the extra steps to add a list of types to this space, as

well as a meta grouping of types, dubbed clusters. This direction makes the spatial order

much more ad hoc, and therefore more similar to Hugill’s internet music types. Because

of these added layers of complexity the taxonomy is actually less useful. It has a large

amount of redundancy, but also notable holes. Ideal usage should likely avoid dealing too

Chapter 2. Network Music 40

much with the types and clusters, and instead consider the basic dimensions as the most

important aspect of the taxonomy.

2.6.1 Computer Supported Cooperative Work

Computer Supported Cooperative Work (CSCW) is a field that has many similarities to

research led in network music, but it also offers worthwhile theories and analyses on how

groups can better function using technology. Perhaps the most famous taxonomy in the

field is the four square map of groupware types (mentioned earlier) which creates cate-

gories as a function of time and place (Johansen, 1988). Grudin and Poltrock suggest an

expansion to a nine square model that accounts for the predictability of the time and place

of the participants (Grudin & Poltrock, 1991). Others have suggested higher dimensional

taxonomies that account for things like group size and member proximity (DeSanctis &

Gallupe, 1987; Nunamaker, Dennis, Valacich, Vogel, & George, 1991).

Researchers Paul Dourish and Victoria Bellotti investigated awareness and coordina-

tion in shared work spaces, finding that shared feedback (information that is collected and

distributed automatically in the background) provides significant advantages for aware-

ness and group efficiency (Dourish & Bellotti, 1992). CSCW usually utilizes qualitative

methodologies which can be useful for analyzing network music systems because of the

inherit subjectivity involved in music composition and performance. Grudin and Poltrock

suggest that the future of CSCW will see a combination of quantitative and qualitative

methodologies which can utilize hard data to support and expand on current models

(Grudin & Poltrock, 2011). This combinatorial approach could prove useful for future

network music studies.

2.7 Conclusion
This chapter began with some ruminations on the definition of network music followed

by a short literature review. Academic review for the field is relatively young, resulting

in a collection of smaller and more recent commentaries. This was followed by a survey

of taxonomies with critique. None of these taxonomies are ideal, demonstrating that the

field still has room for the development of useful critical analysis tools. Given that network

music is so fundamentally tied to the development of technology, this may be an inevitable

fate for any attempt at a taxonomy of network music. These taxonomies will be used in

the following chapters to categorize and analyze the author’s own network music systems.

By considering the previous examples given, a context is provided regarding these new

network music systems.

Chapter 3

Liveness In Network Music
Performance

Chapter 3. Liveness In Network Music Performance 42

3.1 Introduction
This chapter presents a small qualitative survey on liveness in network music; specifically

how issues unique to a network ensemble can affect performance dynamics. The survey

focuses on a small set of current performers in the network music field, probing their ex-

periences and opinions on how networks might influence a feeling of liveness. The themes

in question include perception of the presence of the performance to external parties, their

experience as audience members for others’ works, as well as their interactions with other

members of their ensembles. Network bands and orchestras present a scenario where

communication, co-ordination, and timing are important factors to performance. Espe-

cially for the case of distributed ensembles over multiple locations, focused engagement

in liveness remains a great challenge. Nonetheless, such ensembles may also have unique

opportunities to convey musical efforts and their results to audiences, exploring a sense of

meaningfulness of presence and action.

3.2 Questionnaire
This survey uses a questionnaire to explore notions of liveness in the context of network

music performance. It is a qualitative survey, with questionnaire responses solicited via

email, drawing on the experiences and opinions of current practitioners. Actively perform-

ing network musicians were chosen because they have a unique perspective on the subject

as both performers and as audience members, but also because their technical background

allows them to respond in detail and with specifics to the questions posed. Because the

surveyed group is small (twenty four requests sent, seven received) and personally known

to the research team, an option for non-anonymous response was made available. The

default was anonymity, though, and non-anonymity only extends to attribution of direct

quotes rather than comparative across group analysis. Ethics review approval was gained

from the University of Sussex to run the survey in this manner. Ethics approval can be

found in Appendix A.2 on page V. The full questionnaire is listed in Appendix A.1 on

page III.

Several topics are covered in the 23 questions, starting with some initial interroga-

tion regarding several technical parameters of the performers’ ensembles. Performance

practice, communication, visualization, perception, presentation, and anxiety are subse-

quently probed in the remaining questions with the hope of sparking longer responses.

While only seven responded, they represent several actively performing ensembles with a

range of experience, make up, location, and approach. Still, given such a small sample

size, any results from these purely anecdotal responses can by no means be claimed to be

conclusive or statistically significant. Instead, the goal is to establish an initial collection

of responses and themes. Further studies in later chapters will explore these themes more

formally.

The following is an overview of the ensembles represented, their preferred technology,

and their general approach to networking. The average size of the ensembles represented

by the respondents is 4.57 (no laptop orchestras were represented). All the respondents

Chapter 3. Liveness In Network Music Performance 43

claimed to use laptops with Macbooks being the most noted. Software and languages used

covered a wide range including SuperCollider, Max/MSP, Pure Data, Processing, C++,

Lisp, and Forth. Wireless and ethernet connections were used by all the respondents, but

also MIDI and single board custom servers were noted as having been used historically by

one. Only two respondents claimed their ensemble performed distributed, with the others

stating that they had experience with distribution, yet don’t currently perform as such.

3.3 Emerging Themes
Because of the small sample size no formal qualitative content analysis was conducted.

Instead, informal cross comparisons of the responses was conducted, linking them to pub-

lished literature on arising topics. There were several notable themes that emerged after

collecting and comparing the questionnaires including the roles that live coding, commu-

nication, controllers, and visuals play in network music performance.

3.3.1 Communication

The participants were asked several questions regarding communication, including:

• How does your ensemble communicate with each other during performances?

• How do your ensemble’s channels of communication impact on group awareness?

• Do you find this to be successful and how do you compare it to more traditional
ensembles using acoustic instruments?

All the ensembles represented utilized some kind of text based chat, and for those

ensembles who perform without distributed members the chat system is augmented by

visual communication such as gestures or facial expressions, and occasionally vocalized

speech. Communication in musical performances is often considered vital and network

music is no different (Miell, MacDonald, & Hargreaves, 2005). Unlike other practices

though, network music performances often incorporate some kind of projection, and for

this very reason all the responses noted that their communication is projected to the audi-

ence. These projected communications aim to increase the audience’s appreciation for the

liveness of a given performance, though not all the responses indicated a preference for

text based chat. One response indicated that gestures such as head nodding to the beat

or hand movements are preferable. Juan Romero details the differences of the two modes

by explaining “It’s a trade, gestural communication is faster but simpler, it helps for the

synchronicity and to show approval or disapproval and other basic responses. While chat-

ting, the ensemble can write longer ideas and the others can respond to it, complement it

and develop it, before it is executed. Chat is much more democratic, but in trade it takes

more time.”

Curtis McKinney from the network band Glitch Lich lauded text based chat for the

ability to foster group awareness by stating “We find it to be successful, and it goes well

beyond the traditional means of communication, being able to instantaneously and quietly

Chapter 3. Liveness In Network Music Performance 44

communicate musical ideas, thoughts, or gestures.” In contrast, Patrick Borgeat amusingly

bemoans any effort for communication during a performance: “It’s a general problem that

both with chat and visual cues you don’t have any guarantee that all members a) noticed

it b) agreed with that. This is the same problem that traditional bands have. If the bass

player and the drummer and guitarist all agree by looking at each other that they’ll extend

the solo part you’re almost sure that the singer will start singing the chorus nonetheless.”

Communication, in any form, can be a powerful tool in rehearsal and performance,

though much of the utility is predicated upon group dynamics and politics (Williamon,

2004). These group dynamics are especially highlighted in improvisatory contexts, where

the music can be heavily influenced in real–time (De Jong, 2006). Here was a missed

opportunity to directly inquire about the role of improvisation, especially with regards to

communication and liveness. One response alludes to the role of improvisation, noting

their ability to change their performance in reaction to the audience or the ensemble, but

it would have been beneficial to have focused responses on the subject.

3.3.2 Control and Performance

Several of the questions inquired about interfaces and controllers, including:

• What hardware (laptops, phones, kinect, instruments, etc..) does your ensemble
use?

• What kinds of software, languages, and environments does your ensemble use? Does
everyone use the same collection or is there a mix?

• Given the network music context, in using any controller interface for your music,
how does the hardware effect the connection between effort and sonic output?

As mentioned earlier, novel controllers and interfaces have become a common tech-

nique among electronic musicians to increase perceived connectivity between effort and

output, as well as alter the musician’s relationship to their system. For this reason it is im-

portant to understand how they might be used in a network context as well as the opinions

of the musicians about their usage. Questionnaire responses varied on their virtues, while

none of the ensembles widely incorporated much more than laptops into their standard

setup. One respondent explained the lack of controller proliferation because “Our pieces

tend to emphasize a group network behavior, and this in turn de-emphasizes individual

performance. However, group members are free to use whatever input controls they de-

sire; it’s just that the demands of playing the actual piece and supporting the desired

collaboration often preclude concentration on virtuosic, individual performance.” In some

ways this group dynamic can be compared to a Javanese Gamelan, where the virtuosity

of each performer is superseded by the importance of group cohesion, and where group

virtuosity is more important than any given individual (Brinner, 1995).

In contrast, another respondent regretted his group’s dearth of options: “I feel that

the one aspect that is lacking for the entire group is getting away from the keyboard and

mouse. Granted, it would be difficult and expensive for us all to have the exact same

setups but, in solo and group performances, I’ve found that not sitting in front of a laptop

Chapter 3. Liveness In Network Music Performance 45

is a tremendous boost to the feeling of things being live, no matter what else you may be

doing.” This sentiment is echoed by some researchers, claiming that the more a performer

incorporates the body into live electronic music, the more familiar the performance will

be to an audience, and subsequently easier to appreciate (La Rosa, 2008).

Interestingly, when asked to discuss any differences between their solo and group per-

formances, some respondents came back to the subject of control. Tim Perkis highlighted

that his solo performances are often very gestural and instrumental, but his network music

while still feeling live, was also more composer-like. In contrast Patrick Borgeat pondered

his solo performance ambitions, stating “I wouldn’t be that much interested in liveness

here, but maybe just because I got all the liveness I want with my ensemble.”

3.3.3 Live Coding

The participants were asked “Does your ensemble live code during performance? If so, do

you show your screens?” Live coding is practiced by many network ensembles and there-

fore it was important to inquire about the role it plays in the respondents’ own ensembles

as well as how they consider it to impact their performance and sense of liveness. Three

respondents claimed their ensemble live codes, with Tim Perkis of the Hub musing that

“live coding only happens if things have gone very, very badly.” On a more serious note,

Patrick Borgeat of Benoît and the Mandelbrots celebrates the approach by stating “I be-

lieve that blank slate live coding is as live as computer music can get.” His band mate Juan

Romero tempers the sentiment somewhat by saying “It is hard for live coding to make a

big show out of it, but for us, the combination of screen displaying, group interaction,

communication and our music has had good acceptance as a live act.”

Live coding practitioners have claimed that the practice shores up some of the short

comings of laptop performance such as the obscurantism of the back of a laptop screen

(Ward et al., 2004). By showing their screens they claim to allow the audience to have

a better understanding of the intent and efforts of the performers (Wang & Cook, 2004).

On the other hand, there is a risk of further obscuring the act, as Alex McLean notes in

his Ph.D. thesis on the topic “Most people do not know how to program computers, and

many who do will not know the particular language in use by a live coder. So, by pro-

jecting screens, do audience members feel included by a gesture of openness, or excluded

by a gibberish of code in an obscure language?” (McLean, 2011). One respondent, Juan

Romero, also suggests that live coding could have an effect on the interaction of the per-

formers with the audience, stating that “After some concerts people remark how we write

our code so fast, and we are fixed on our screens in a kind of ‘Tunnel Vision’, but then

we start being more social and make the music collectively. So this kind of effort is more

appreciable during the beginning of our concerts, but also visible throughout the whole

performance.”

3.3.4 Visual Presentation

Several questions asked specifically about visual presentation, such as:

Chapter 3. Liveness In Network Music Performance 46

• Do you use any kind of visual element during performances? If so please describe
the presentation?

• How do you feel your ensemble’s visual presentation is effected by your networking
setup? Does this effect your feeling of connection to the other performers during a
performance?

• Does your ensemble live code during performance? If so, do you show your screens?

Laptops (which are used by all the respondents) have had many criticisms with regard

to their use as a musical instrument. These criticism include issues such as performer

disembodiment, the appearance of an introverted demeanor, lack of social conventions or

legacy, minimal physical effort, and a lack of authenticity (Cascone, 2003; Magnusson &

Mendieta, 2007). As one respondent eloquently put it, “It’s a bit ironic; the performance

practice we have embraced in order to make electronic music that is very, very live, can

look very, very dead from the audience’s perspective.” The previous section on live coding

addressed some of these issues, and how live coding could possibly help, yet four out of

seven respondents did not claim to live code. All of the represented ensembles utilize

some form of visual projection during performance. For the live coding band Benoît and

the Mandelbrots, this consists of showing their screens and the utilization of some visual

effects on the signal. Other groups cited the use of chat displays, visualization of the net-

work and flow of data, and two dimensional and three dimensional graphics as techniques

that were employed.

It would have been useful to further inquire if the respondents were making choices

with regards to approach and visuals representation in reaction to the previously cited

criticisms of laptops. The fact that all the groups have some visual component to their

performance beyond simply sitting behind their computers might imply that there are

conscientious efforts to mitigate these issues, but the claim cannot be made with the cur-

rent responses to the questionnaire. Juan Romero does offer some interesting insight with

regards to audience opinion on the perception of liveness: “Other people have suggested

we should use more light, and other kinds of gimmicks (e.g. using uniforms, walking on

stage on Segways, marching while live coding, perform solos, virtuoso laptop air coding,

boy band choreographies, etc.) which would help for a live situation, at least make it more

interesting (and funny I guess), but our easy set up, and sitting in front on the computer

is also acceptable for us, and for the interested audience.”

3.3.5 Perceptions of Liveness

The following questions inquired directly regarding liveness:

• Broadly, how do you feel network performance, and in particular your ensemble’s
approach to network music effects a sense of liveness as a performer?

• If you perform electronic music as a solo performer as well, could you please describe
how your solo performance and networked performance work differs with respect
to liveness?

• What do you think has worked well for your ensemble, and what do you think has
not, in regards to fostering a general sense of liveness during performance?

Chapter 3. Liveness In Network Music Performance 47

All the responses indicated that they felt networked performance to be highly engag-

ing. Tim Perkis explains “It’s very personally engaging. Over time I’ve come to realize

that the actual interactions and personalities and humor of the performers is the most

compelling aspect of the music.” Nevertheless, none of the network musicians felt that

networking itself had any effect on liveness (as opposed to engagement), as evidence by

this quote from Patrick Borgeat: “I don’t think that networking enhances or diminishes

the ‘live factor’ of our performance.” Another response expounds “I don’t think the net-

worked aspect causes an inherent difference in liveness; it much more depends on the

priorities of the musicians involved.” Tim Perkis, earlier touting the engagement inherit

in networking, only replied “Adversely, probably.” Another response simply stated “I don’t

know :(” These answers are interesting because they imply that there might not be a direct

correlation between performer engagement in a performance, and a sense of liveness for

an audience.

Performance anxiety can have a large effect on some musicians, and it could even be

said to be the result of a performance feeling too live. With this in mind, musicians were

asked specifically about their opinions regarding the effect that networked performances

have, if any, on their feelings of anxiety. Responses claimed a range of anxiety during per-

formance, both in networked and non-networked settings. None of the responses claimed

to have increased anxiety in networked performances, but several claimed a reduction for

various reasons. Patrick Borgeat feels that performing network music moderates several

problems that performance anxiety can create. Here he compares instrumental and lap-

top performances: “My traditional instrument is the saxophone, though I never played it

professionally. I haven’t played it for several years but two months ago I played with it

again in public. Here I realized that stage anxiety does much more influence my body

than my mind: My air and lip pressure trembled and badly influenced my playing. Even if

my fingers would tremble in this way I could still type code (maybe a little slower) so here

the ‘digitalliness’ of our interface filters out the noise of my anxiety.” The added presence

of other musicians was mentioned several times, such as this humorous response: “For me

the slightly higher degree of anonymity in a laptop ensemble, mostly due to the relative

difficulty to discern which member of the ensemble just exploded the filter, really seems

to have an effect on the level of stress involved.”

Performing music with computers introduces the possibility for technical problems to

impede the performance. One respondent noted the improvement of software over the

years: “Back in the day, I remember a great deal of anxiety about technological failure,

and for good reason! Now that the tech is much more stable, that is less of a concern.

Having five noisy bandmates can cover a host of problems, as long as the whole network

doesn’t fail. I don’t think I’ve ever played a concert that didn’t generate a great deal of

excitement for me. It’s why I perform, after all.” Tim Perkis describes how the Hub copes

with these issues: “Our music is complex and difficult enough to perform that there is often

at least one person not working at any one moment, so there is little anxiety about that, we

just expect it.” Glitch Lich, Curtis McKinney’s laptop band, performs distributed, and he

described the effect on anxiety by saying that “Network music while playing dislocated and

Chapter 3. Liveness In Network Music Performance 48

away from the actual audience severely diminishes this, but it also serves to somewhat dull

the adrenaline rush and immediate sense of contentment with a well done performance.”

Other responses supported the sentiment that distribution dampens the adverse effects of

nervousness.

3.3.6 Ensemble Structure

Ensemble structure was the subject of the following questions:

• Does your ensemble perform with members physical distributed among several lo-
cations?

• How does your ensemble’s structure and approach influence your sense of involve-
ment in performance?

• If your ensemble performs physically distributed, do you feel this effects a sense of
liveness or connectivity?

Some participants suggested that fostering individuality in the network with regards

to audio production and reaction to network activity has been vital towards creating more

lively and interesting performances. A respondent explains, “Our design and performance

practice, from the very early days, has concentrated on the emergent behavior of the net-

work / ensemble, and I think this has led to consistently surprising and lively performance.

One interesting thing that we’ve found is that it is very important that each member real-

ize each piece specification in their own individual manner – sharing of piece code tends

to homogenize and ‘deaden’ the resulting perfomance.” On the other hand, Juan Romero

suggested that there is an advantage to a symmetrical ensemble, stating, “We had a mix

in our first performance (Max + SuperCollider) but then all the members of the band

recognized that having all SuperCollider would be better to make a framework for staying

in sync and sharing data. Also for learning from each other.” One respondent felt that

having a shared visual interface helped foster performer interactivity as well as increase

audience understanding, explaining “If we were all doing something completely different

and just trying to make it work together sonically, I don’t feel like anyone, including us,

would feel as connected to what we are doing as when we can all see and interact with

the same environment.”

Ensemble distribution is one of the unique possibilities afforded to networked ensem-

bles, but only one of musician claimed that there was any merit in this structure. Re-

sponding to an inquiry regarding multi-site distribution and liveness, Curtis McKinney

explains “It certainly affects it, though it is not all negative. It’s a different performance

medium, with different possibilities and restrictions.” Others had much more negative

opinions. Responding to the same question, another musician plainly states “It affects it

quite negatively; this has been our invariant experience. Nothing (in current technology)

can approach the moment-to-moment live interaction to be enjoyed with musicians sitting

in the same room together.” Tim Perkis agreed, saying “I don’t find multi-location playing

very interesting. it seems like a gimmick that offers no particular advantage in any way.”

Another had a more nuanced opinion, suggesting “I think that remote performers need

Chapter 3. Liveness In Network Music Performance 49

some kind of visual presence (by video projection or with an avatar in the visuals), oth-

erwise you don’t really recognize them as a performer who has influence over the current

piece.”

3.4 Summary
Several important themes emerged from the responses of the network musicians who par-

ticipated in the survey. Generally the responses were concerned with certain fundamental

themes including communication, control, visual representation, individuality, and group

behavior. All the ensembles represented by participants in the survey utilized some kind

of communication during performances, but not all the responses indicated that this com-

munication was mediated by their interface. The respondents who represented ensem-

bles with distributed members all used communication channels via their network music

interfaces. This may indicate that while some communication channel may not be a re-

quirement for a successful network music interface, that it may be a requirement for a

successful performance. Additionally all the respondents recognized the importance of

communication in collaborative rehearsals and performances.

Another important theme is the reported lack of use of input controllers. Although one

response bemoaned the lack of variety, most responses indicated that their ensemble em-

phasized group dynamics over individual virtuosity. This fact may also be a consequence

of the fact that several respondents used live coding in their performances.

All the participants indicated that they utilize some form of visual component in their

performances. These visual components serve to make the performance more exciting or

interesting for an audience. Most of the groups employed the strategy of “Show us your

screens”, and projected the direct interface of the performers. Others used some kind

of external visualization program that ran parallel to the music software, listening and

reacting, but not participating. Network music interfaces may benefit from these visual

approaches, but there was no consensus in the responses.

Some participants reported working in ensembles that don’t user a single music in-

terface, but instead an array of interfaces. In these groups individuals defined their own

behavior according to a predefined set of communication protocols. By contrast other

groups reported using a single or unified interface for the entire ensemble.

Chapter 4

Yig, The Father of Serpents

Chapter 4. Yig, The Father of Serpents 51

4.1 Introduction
Yig, the Father of Serpents is an application for creating and manipulating feedback matri-

ces in real-time over the internet. The name was chosen as a reference to H.P. Lovecraft’s

The Curse of Yig (Z.B. Bishop and H.P. Lovecraft, 1953) as well as the ancient symbol of

the ouroboros1, both as metaphors for feedback and recursion. A video of a Glitch Lich

performing with Yig at the 2012 Network Music Festival in Birmingham, UK can be found

at https://vimeo.com/50402941. The program was created with the philosophy that per-

formers don’t require identical experiences to have a successful performance. Research in

the field of network music has historically attempted to create perfect reproductions for

performers in separate locations in an attempt to unite the clients within one absolute and

real performance (Barbosa, 2003; Weinberg, 2005; Schroeder et al., 2007). By contrast

Yig is designed as a system that, while using techniques for low latency and high levels of

synchronicity, has naturally divergent sonic results in the network.

Yig is an Open Sound Control (OSC) client to the SuperCollider scsynth server utilizing

a patch based visual interface. Synths running on scsynth are displayed as circular objects,

with parameter modulation via object rotation, and collision based cable creation. When

one of these circular synth objects is dragged so that it overlaps with another circular

synth object a connection is created from the output of the source synth to the input of

the target synth. See figure 4.3 for an example of three synth objects linked using these

kind of cable connections. These synths use their input audio to modulate audio or control

signals, as well as to add to their own output. These connections can be cyclical, allow-

ing for feedback networks to be created using several synths and connections. Control

information that defines object states is networked using a server based OSC synchroniza-

tion system. Stochastic Unit Generators (UGens) within synth definitions are combined

with input analysis, such as pitch and onset detection, inside feedback matrices creat-

ing complex dependencies and chaotic behavior. While the performers’ object states may

be syntactically identical, they can in fact be sonically divergent. This is because of the

codependencies of the synths and the combined minute differences in timing and syn-

chronization. Yig does not try to combat this, but in fact embraces these differences as a

fundamental concept of network performance.

Performers do not perform with each other, but along side each other in parallel, yet

fundamentally different, experiences. None of the sub-performances in the web of the net-

work is any more real than the others. The most considerable efforts to ensure an identical

reproduction will never produce true copies. Even if it were possible, the differences in

presentation, venue, sound systems, audience presence and many other uncountable de-

tails creates a fractured image of the concert with no singular source.

Composing, performing, and improvising in a fractured ensemble is a unique opportu-

nity for the network ensemble. In 1987, one of the first multi-site performances featured

the pioneer network band the Hub performing in two spaces simultaneously (Brown &

Bischoff, 2002). This concert presents the six member ensemble as bifurcated sub ensem-

bles networking locally. The two trios communicated with each other via a phone line

1The Ouroboros is a symbol depicting a snake eating its own tail.

Chapter 4. Yig, The Father of Serpents 52

modem, however only control data was shared. The ensemble was informationally joined

but acoustically divided.

By allowing some openness into the network, unique perspectives can flourish and de-

cisions can have unanticipated results. Incidental findings have shown Yig to be a viable

choice to compose and improvise music for laptop bands. Yig provides a robust framework

for network performances over extremely large distances while preserving low latencies

and high levels of syntactic synchronicity. As an open source instrument, Yig provides lap-

top musicians with the ability to create unique music or to reuse the codebase (McKinney,

2012) for their own projects.

4.2 Design Philosophy
The core design philosophy is to have an instrument that allows for collaboration between

players and the system itself, where choices are meaningful, but also produces unexpected

results. Yig was designed for Glitch Lich performances as well as any other interested

parties to use. As mentioned in Chapter 2, Glitch Lich performances have a certain set

of requirements technically, and aesthetically. First is that the interfaces must facilitate

distributed performances. In Yig all nodes in the physical network render the full output

of the audio, allowing for performances from multiple locations at the same time. Next

the system must support some kind of communication, in the case of Yig, this is a simple

chat system.

Next, the system must emulate some kind of virtual space. Yig uses a simple two di-

mensional space for the collaboration. The spatial and collision based design allows for

this simple virtual environment to facilitate constantly changing group dynamics. Addi-

tionally, this virtual space must have some kind of visual component for Glitch Lich per-

formances. Yig has seen several performances where the interface was projected directly

to the audience, but the interface was not designed to fit the visual aesthetic of the band.

Instead, performances would often use a second program written in C++ using Cinder

and OpenGL to render a highly stylized version of the Yig program state for the audience

to see. A picture of a Glitch Lich performance using this custom visualization program can

be found in Figure 4.1. Finally Glitch Lich requires some form of autonomy in the system.

Yig uses complex feedback networks to create behaviors that change and evolve without

direct input.

In addition to the requirements for a Glitch Lich performance, Yig was designed to cre-

ate fast changing chaotic and noisy music. The knob–like design of the main synth objects

are intended to allow for a simple but efficient input mechanism for fast changes. The

collision based connections are also designed to facilitate fast exploration and experimen-

tation, allowing for the feedback network to be reconfigured instantly just by dragging

objects across the screen.

The design philosophy outlined above produces an interfaces with inherit limitations.

The 2D space allows for easy viewing of the entire virtual space, but also forces this

homogenous view onto the entire group. The knob–like controls are quick and easy, but

Chapter 4. Yig, The Father of Serpents 53

Figure 4.1: Glitch Lich performance at the Network Music Festival using Yig with an external
visualization program.

also lack precision. This is especially apparent when the knobs control parameters that

are directly mapped to pitch. Having such a heavy reliance on autonomy can produce

undesirable results at times. The feedback networks in Yig can resist change at times,

making performances occasionally less dynamic.

The next section will describe various features as well as the development process. This

is followed by an analysis of the system using Andrew Hugill’s internet music types as well

as Thor Magnusson’s epistemic dimension space. Subsequently, the networking behind

Yig is explained and the concept of divergence in network music is discussed. Finally, the

conclusion establishes several potential improvements for the system and ideas for using

divergence in networks.

4.3 The Interface
Yig is an instrument designed for real-time performance. Because of this, many design

decisions seek to streamline actions necessary to create and manipulate sound while pre-

serving depth and flexibility. Originally the cable creation was envisioned to be similar to

Max/MSP or Pure Data where the input and output nodes are connected through explicit

mouse clicks (Cycling ’74, 2014; Chung, 2013). However, this approach was abandoned

very quickly for something more similar to the mobile platform version of the ReacTable,

Chapter 4. Yig, The Father of Serpents 54

which has proximity based connections, for the sake of increased agility (Jordà, 2009).

While there are some similarities to the ReacTable graphical user interface (GUI), Yig is

not just an imitation. The interface was designed with performance over a network as the

main feature.

4.3.1 Features

Making music with Yig requires four main actions: Synth creation, synth deletion, cable

creation, and cable deletion. Synth instances are created by dragging items from the

synth menu on to the playing area. Synths are represented as concentric circles with an

animated oscilloscope in the middle. Each synth has two modulatable parameters, two

audio feedback inputs and one audio feedback output. By default all synths route audio

directly to the main outputs in addition to the feedback output which allows for complex

chains of non-linear structures.

Synths can be linked together through colliding one synth over one of the input nodes

of another synth. Collision detection automatically generates an animated cabled connec-

tion showing the channel(s) of the connection as well as the flow of audio, which can

be bi-directional. When two synths are dragged past a predetermined length, the cables

automatically detach. This is similar to the iPhone mobile application Jasuto, although

in Yig only disconnections are proximity based while cables are created during collisions

(Wolfe & Wolfe, 2014). It is important that cable creation and deletion is easy and intu-

itive in order to allow for fast manipulations of the audio connections. Such fast changes

in routing are difficult to reproduce with physical equipment.

Figure 4.2: Screen shot of Yig, the Father of Serpents.

A server window floats on the bottom of the screen showing the current status of sc-

synth, including peak and average cpu usage and the number of running synths. There are

also the recording, connect, and option buttons. When a user clicks the connect button,

Chapter 4. Yig, The Father of Serpents 55

given that they have properly set up the OSCthulhu client, the server window automati-

cally extends itself to include a current list of users online and a chat window is created in

the bottom right corner of the screen. Having built in communication is paramount to suc-

cessful network performances. When connected to the network, other users’ cursors and

selected synths are visible. These visual cues provide additional modes for communication

during a performance.

4.3.2 GUI Development

Yig is written in C++ with heavy reliance on the Qt framework (Summerfield, 2010). Qt

was chosen because of its strong cross platform GUI application programming interface

(API) which greatly simplifies and streamlines the development process. Creating Yig with

Qt was found to be highly flexible because the API allows for highly encapsulated design.

This encapsulation was beneficial to our object oriented approach to GUI programming by

allowing the interface between widgets and GUI elements such as buttons and displays, to

operate in a high level manner, reducing complexity and increasing robustness.

Figure 4.3: Three Yig synth objects connected to eachother.

Qt proved invaluable during development, however the early decision to use the QGraph-

icsView and QGraphicsScene paradigm for the creation and manipulation of graphics el-

ements proved to be a mistake. QGraphicsView enables incredibly easy implementations

of drawable items with the convenient inclusion of important features such as mouse

and keyboard interfacing and collision detection. These features made early development

much easier, however the performance of the system was much worse than anticipated.

With only six synth objects, which are very simple circle graphics, the system idled at 20

percent CPU usage on a two year old Macbook Pro. When the synths were moved, trigger-

ing redrawing of the items and collision detection, the CPU usage could jump dramatically,

Chapter 4. Yig, The Father of Serpents 56

upwards to 70 percent. Many approaches were attempted to increase performance, such

as multithreading and pre-caching reusable graphics items, however the results were still

slower than preferable. This required addressing as initial experiments with the system

showed that it was easy for a player to create and manipualte many of these synth ob-

jects at once. With multiple performers controlling multiple synths this could render the

interface sluggish and unresponsive.

When work began on animation for the oscilloscopes and cable connections, an OpenGL

approach was chosen over extending the use of QGraphicsView. This proved beneficial,

however only the animated graphics currently benefit from it. In retrospect, OpenGL

should have been used for all of the graphics items, which would have required some

extra programming for the previously mentioned features, however the results would be

a faster interface that takes advantage of the computer’s GPU, freeing up crucial CPU

processing power for other important tasks such as audio rendering and networking.

4.3.3 Synth Definition Development

At its core, Yig is an scsynth client. However, scsynth does not run as a separate process,

but instead, using libscsynth, operates internally within the same process. This config-

uration allows for the seamless retrieval of audio buses for oscilloscope animation, but

also serves to maintain a singular package for distribution. Libscsynth was chosen over

other options, including a custom audio engine, because it is open source, lightweight,

robust, and high quality (McCartney et al., 2016). Most importantly, Yig is intended to be

an instrument that allows for easy extension. The synth def plugin architecture provided

by scsynth allows for high level synth creation by users without the need to recompile the

program. Any user with a working knowledge of SuperCollider based synthesis can simply

modify and extend the Yig synth definition template (found in figure 4.4) to create new

sounds.

SynthDef.new("YigTemplate",{

| amp = 0.1, feedAmp = 1, paramOne = 0.5, paramTwo = 0.5,

audioIn = 24, modIn = 24, audioOut = 20, gate = 1 |

var env , directOut , feedOut , audioInput , modInput , sil , signal;

env = EnvGen.ar(Env.asr(Rand (0.1,5),1,0.1,-4), gate : gate ,doneAction : 2);

audioInput = InFeedback.ar(audioIn) * env;

modInput = InFeedback.ar(modIn) * env;

signal = audioInput + modInput; // Replace this with your code.

sil = Silence.ar;

signal = Select.ar(CheckBadValues.ar(signal), [signal ,sil ,sil ,sil]);

Out.ar(0, [signal ,signal] *amp);

Out.ar(audioOut ,signal*feedAmp);

}). store;

Figure 4.4: Yig’s basic SuperCollider synth definition template

When creating new synths for Yig, some considerations are helpful. No synth exists in a

vacuum, instead the synths behave differently in varying feedback network configurations.

Chapter 4. Yig, The Father of Serpents 57

For this reason, it is important to thoroughly explore the range of sounds before settling

on a final version. Often, unexpected and exciting, or disappointing results can appear.

Also, because Yig is so focused on feedback, loss of sound can be an issue. It is highly

recommended to use the CheckBadValues UGen, which is used in most synths to prevent

unstable or malformed values from destroying a performance. The CheckBadValues UGen

tests for infinity, NaN (not a number), and denormals. Used in combination with the Select

UGen, a different output (Silence is used above) can be chosen when the signal becomes

malformed. Yig heavily uses feedback between large numbers of synths, each of which

use and modify their input signals in many different ways. This technique ensures that if

a signal becomes unstable then there are some safety measures that could help rein it in.

Currently there is no global tempo synchronization. In some performances demand rate

UGens have been used to create sequenced rhythms. This technique cannot guarantee a

synchronized pulse between instances without feeding this pulse through a specific bus.

An example of one of the synths that was used in performances of Yig can be found in

Appendix B.5 on page XX.

The design decision to focus on feedback is deliberate. The goal is to have a system

that not only allows for the performers to collaborate with each other, but to also col-

laborate with Yig itself. A good Yig performance will utilize feedback networks to curate

evolving and autonomous emergent behavior. With that in mind, these networks should

not just be created and left alone. Instead, the feedback should be treated almost like

another performer. There should be listening, reactions, counterpoint, and interruptions

when playing with this emergent phenomenon. Yig performances work well when the sys-

tem produces unexpected behavior, prompting reactions from the performers who make

changes, subsequently prompting reactions from the system itself as well as the other

performers, and on. These feedback networks do not always produce a wildly evolving

chaotic maelstrom. Indeed, during performances Yig can be stubbornly monotonous or

even annoying. This is also part of the design, as playing with Yig should be an exercise

in challenging the performers’ exceptions, even when those exceptions anticipate the un-

expected. This design makes performance interesting and challenging, but it also means

that some performances are more successful than others in a way that can be outside of

the hands of the performers.

4.4 Networking
The networking for Yig was designed to ensure functionality over long distances while

using slow and even intermittent internet connections. To accomplish this, Yig uses low

bandwidth user datagram protocol (UDP) based OSC messages to ensure high speed trans-

fer. Audio is rendered locally on each network node’s computer and no audio is directly

networked. Instead the state information, such as the synth objects and their parame-

ters, is broadcasted across the network. This approach greatly increases the speed of the

networking while ensuring that variance in the internet connection does not have a great

immediate impact on the resulting output of the performance. When networking audio

Chapter 4. Yig, The Father of Serpents 58

directly, if the internet connection is lost for a period of time or speed drops dramatically,

the audio output of the system is directly and recognizably effected. When networking

state information these variances will effect the performance, but in a less direct manner.

Instead of audio jitter or loss, the local state of the machine may begin to diverge from

the other nodes, however the audio fidelity of the system is not effected and often these

events go unnoticed by audience members and even the performers themselves.

4.4.1 Synchronization

Because the networking in Yig uses control information instead of audio the issue of syn-

chronicity becomes paramount. Without any steps taken to address dropped UDP packets,

divergence in the system would steadily increase over time, rendering the networking

completely unreliable. To address this issue Yig uses the OSCthulhu server and client

system for OSC synchronization.

OSCthulhu is a synchronization system that attempts to create a program agnostic in-

terface for networked variable serialization and synchronization (McKinney & McKinney,

2012). It should be noted that while the author has contributed to OSCthulhu, Curtis

McKinney is the main contributor, and that system is not a part of this thesis. The benefits

of the system are a simple API and a server based synchronization scheme that allows

developers to bypass many of the issues in synchronization systems development. OSC

messages are sent first to a local OSCthulhu client, altering local state information. Next

the client messages the OSCthulhu server directly. Finally, the server broadcasts the mes-

sage to the all participants. Because the server runs on a rented machine on the open

internet, it bypasses many of the problems that other OSC systems such as OSCgroups

have with routers and firewalls blocking traffic. A synchronization cycle every 1000 mil-

liseconds ensures state mirroring across the network so that packet loss is usually adjusted

for within one second.

The networking code in Yig is more similar to a video game than a typical network

performance system. This is because in OSCthulhu messages are never sent directly to

other players. All traffic passes through the server, and the server is the fundamental

governing body of the ensemble, similar to the Hub. Objects known as sync args are

created on the server that represent a network entity. This could be anything from a synth

or cable, to a cursor. The entire ensemble is updated when a set sync arg message is sent

to the server. If a client misses a synchronization cycle, they will be updated on the next

pass, ensuring network symmetry.

This approach has been tested time and again not only in OSCthulhu, but in the video

game industry as well (Sweeney, 1999). When utilizing the API there are some special

considerations. Some messages, such as synth creation and deletion messages in Yig, can

cause local volatility if the message is not received by the server. When using UDP it is

important to assume that if messages are sent, it is likely that they may not be received

at some point. The ramifications of that can be enormous, but OSCthulhu has a tool to

ensure stability. These messages are sent out before interpretation so that they update the

server first before updating the local machine. The local machine will only be updated

Chapter 4. Yig, The Father of Serpents 59

when the server sends back a synchronization message. Missed messages from the server

are far less severe than missed messages to the server.

As an example, consider the deletion of a synth. If the synth were deleted locally and

the message never reached the server, the ensemble would still have representations of

that synth on their system. At this point the local player has no way of bringing them-

selves back into step with the ensemble without another player serendipitously deleting

it. However, when first sending the server these kinds of mission critical messages, the

problem will always automatically resolve itself. There are three possible outcomes when

sending messages directly to the server before interpreting them locally. First, the server

never receives the message. Second the server receives the message, but the local client

does not receive the synchronization reply. Finally the server and the client both receive

their messages.

Back to the example of the deleted synth. If the deletion message is never received

by the server the synth simply never changes on the local machine and is still available

to make another deletion attempt. If the message is received by the server, but the syn-

chronization isn’t received by the client, the client will simply be updated by the next

synchronization cycle. Finally if both messages are received, functionality is as predicted.

This approach is not always appropriate however. Often you have objects where speed

is more important than accuracy. In Yig, setting the value of one of a synth’s parameters

will occur locally before the message is sent to the network. This is because the synths

are set by mouse control. This type of gestural information spans several packets and is

therefore more resilient to packet loss. When the synth is changed, a smooth transition

occurs locally and the gesture is preserved. If part of the gesture is dropped on the way to

the server, the whole does not suffer greatly for it.

4.4.2 Divergence in the Network

Using OSCthulhu synchronization ensures that the state of Yig is tightly mirrored between

network nodes, however this does not guarantee that the audio output of the system itself

is identical. Small differences in timing can greatly effect the audio and control feedback

chains within Yig, in turn creating sometimes drastically different results. A realignment

from a dropped packet could take longer than a second with very bad connections. In that

time a chaotic ugen will continue to calculate output using differing states between the

users as well as different audio input from the feedback chain. There is no opportunity

to truly synchronize the audio output of these systems between users. This prompts us to

ask a few questions, though there are no perfect answers.

First, why not just network the audio, even given the requirement of high quality net-

work connections? Broadband connections will continue to improve, offering network

music faster and more stable infrastructure. What is considered a high quality research

connection could become typical for internet users in the future. Perhaps designing sys-

tems with faster connections in mind will ensure their relevancy and value? However,

simply networking audio between nodes may only serve to reinforce traditional methods

of performance.

Chapter 4. Yig, The Father of Serpents 60

Networking offers new possibilities for music composition and performance beyond

simply allowing performers to be further apart during performance or rehearsal. Regard-

less of the distance, a system like Yig grants a group of performers the ability to collaborate

that simply sending an audio signal cannot capture. The important part here is not the

network connection itself, but rather the interactions of the group.

It would be possible to design a system where a server renders audio and sends streams

to the performers. However the audio quality would suffer due to jitter in the network

and a loss of internet would absolutely terminate the performance. In contrast, Yig can

operate independently of the network allowing for continued performance in the event

of connection loss. In the server audio scenario latency would also be an issue because

it would restrict the ability for the performers create fluid gestures and hear immediate

results. Furthermore, the network would become congested, potentially causing control

packets to be lost more often. By using locally rendered audio, the trade off is that the

node renderings might not be identical, but control is fast and fluid and the network is

much more robust.

Why attempt to network naturally divergent systems? Given that these systems present

difficulties for the technology, why shouldn’t they just be avoided? Where something can

be done musically, often someone will do it; composers and performers like to experiment,

and often like to break things in the process. Is divergence in networking bad? Network

music attempts to create a seamless and invisible framework for the users. Any noticeable

artifact of the system is an irregularity and steps should be taken to eliminate them. How-

ever, this philosophy fails to capture the truly interesting aspects of network music, which

are the defining features of the entire approach. There is a disconnection between users

and an artificial attempt to traverse it. This could be seen as a problem, but the design

philosophy was to engage it as a unique resource.

4.5 Categorization
It may be useful to understand Yig within the context of previous attempts to classify

and analyze similar instruments. Barbosa’s network music classifications plot a networked

piece or system along a two dimensional space that describes interaction (synchronous/asy-

chronous) and location (local and remote). The space is divided in two four quadrants

where different types of music or music systems can occupy one or more of these quad-

rants. First addressing the ‘interaction’ dimension, Yig is designed to be a synchronous

instrument. From the server and client architecture to the lack of any kind of save feature

(beyond simple recording), Yig is focused on live interactivity between players. The sys-

tem could be run on a central computer or server where clients connect and leave behind

feedback network lattices for other visitors to interact with at a later time. This is only

conjecture and has not been attempted to date. Instead. Yig is plotted in the synchronous

half of the space.

For ‘Location’ Yig can safely be categorized as both ‘Local’ and ‘Remote’ because the

entire system was designed to facilitate both types of work. One consideration is that Yig

Chapter 4. Yig, The Father of Serpents 61

can feature large amounts of divergence in behavior across the network, and for this rea-

son it may be preferable to use a single computer for audio output, but this is a preference

to the collaborators as the divergence may be considered to be an interesting layer added

to the music. Barbosa labels systems that are synchronous but support both local and

remote collaborations as ‘Shared Sonic Environments’ which is especially fitting for Yig as

there is in fact a visual shared environment and interface to accompany the shared sonic

environment.

As shown previously in table 2.1 on page 35, Andrew Hugill’s internet music taxonomy

provides five categories that broadly define several established approaches to creating

music using the internet. Music created with Yig falls well into the category of Music That
Is Created or Performed in Virtual Environments, or Uses Virtual Instruments. Yig provides a

single synchronized environment within which users collaborate and perform. Given that

the categories are broad, an argument could be made for a classification within Music That
Uses the Network to Connect Physical Spaces or Instruments or Music That Uses the Internet to
Enable Collaborative Composition or Performance. However, neither of these account well

for the sort of interactions that Yig establishes through its usage. Yig provides a singular

world within which to perform and does not attempt bridge multiple distinct locations.

Gil Weinberg’s various network configurations are a veritable zoo of possibilities. While

many of the theorized configurations could make for an interesting piece, Yig uses one of

the simplest, the ‘Flower’. The ‘Flower’ is a simple client and server hub configuration

where clients don’t communicate directly and all traffic is routed through the central hub.

This particular configuration is a matter of pragmatism as this method is a traditional

and stable approach to multi-user systems, and is still used in many modern video games.

While Yig’s technical networking infrastructure is not very unique, the feedback networks

and lattices that users creates within the virtualized environments can form some of the

more exotic configurations presented by Barbosa. In this way the physical networking is

serving almost like an emulation layer for the virtualized connections that players make

between running synths. This is similar to how higher level languages such as Lua and

Python virtualize more complex behaviors and abstractions, while being calculated and

executed in a lower level virtual machine, and ultimately executed as a series of machine

code instructions by the CPU. This is because Yig creates a virtual network of synth objects

and feedback connections that are simulated on each of the machines. The physical com-

puter network is required to maintain the synchronization of this virtual network on the

various machines in the physical network. The network that the players are dealing with

directly is the virtual network in Yig, not the physical machine network.

Föllmer’s spatial order of the twelve types of Net music is a three dimensional space

plotting ‘Interactivity/Openness’, ‘Interplay with Network Characteristics’, and ‘Complexi-

ty/Flexibility’, each with a rating from one to five. For ‘Interactivity/Openness’ Yig can be

rated moderately at a 3 as the system is very open and encourages chaotic exploration,

yet this openness is only afforded to the performers, and general audiences cannot eas-

ily interact without downloading and installing the software, along with running their

own server instance. Yig can also be plotted about a three in the ‘Interplay with network

Chapter 4. Yig, The Father of Serpents 62

characteristics’ dimension. A large part of the design of Yig is to explore the inherit di-

vergence caused by network characteristics, yet these divergences are not the sole focus

of performances with the system like some other network pieces or systems. For ‘Com-

plexity/Flexibility’ Yig again can be rated a three as the system can facilitate some rather

complex and sophisticated behavior, yet much of that behavior is defined ahead of time

in the synth defnitions that are precompiled from SuperCollider. There is a deep resource

for complexity, but the particular infrastructure mutes the realistic utility of it in some

cases. A rating of threes plots Yig directly in the middle of the space, putting it firmly

in the K type: ‘Network Performances’ which is a part of the V cluster for ‘performances’.

This plotting lines up well with both the intended design for Yig as well as the history of

performances Yig has seen throughout the past several years.

expressive constraints

autonomy

music theory

explorability

required knowledge

improvisation

generality

creative-simulation

m
a
n
y

m
uc

h

much

m
uch

m
u
c
h

ea
sy

much

creative

expressive constraints

autonomy

music theory

explorability

required knowledge

improvisation

generality

creative-simulation

m
a
n
y

m
uc

h

much

m
uch

m
u
c
h

ea
sy

much

creative

expressive constraints

autonomy

music theory

explorability

required knowledge

improvisation

generality

creative-simulation

m
a
n
y

m
uc

h

much

m
uch

m
u
c
h

much

expressive constraints

autonomy

music theory

explorability

required knowledge

improvisation

generality

creative-simulation

much

m
u
c
h

ea
sy

much

creative

Jasuto Max/MSP

Reason ReacTable

Figure 4.5: Jasuto, Max/MSP, Reason, and the ReacTable plotted in Magnusson’s epistemic di-
mension space.

Using Magnusson’s epistemic dimension space, Yig’s characteristics as a performance

instrument can be analyzed and graphed, providing insight as well as an opportunity for

comparisons to other instruments. Parameters are mapped along 8 axes creating a polygo-

nal field that describes the overall distribution of specific qualities. Expressive constraints,

autonomy, music theory, exportability, required foreknowledge, improvisation, generality,

and creative–simulation continuums are plotted for the software and comparisons can be

Chapter 4. Yig, The Father of Serpents 63

expressive constraints

autonomy

music theory

explorability

required knowledge

improvisation

generality

creative-simulation

m
uc

h

much

h

m
u
ch

e

much

Yig
Figure 4.6: Yig in the epistemic dimension space.

made to other software. Once mapped in the dimension space, underlying design im-

plications are revealed as exaggerated contours. Yig is shown to emphasize the ease of

improvisation, while deemphasizing the required knowledge to play the instrument. The

performer is not required to know any music theory and does not expect any other special

skill beyond the ability to start and run the networking client correctly.

The instrument allows for high levels of exportability and autonomy. Creating complex

feedback chains affords the user with many opportunities for detailed experimentation.

However the simplification of the system also serves as an expressive constraint. There is

some allowance for direct control over the music, but the full dexterity of the human hand

is reduced to a one dimensional rotation.

4.6 Audio Divergence Test
To demonstrate how easily two nodes with identical states can diverge, a small case study

was arranged using Yig with two participants, one in Brighton and the other in London.

Both nodes initialized a recording and created a small feedback network. Once the synths

Chapter 4. Yig, The Father of Serpents 64

were connected no further changes were made. The recording was allowed to run un-

touched for five minutes.

Figure 4.7: Comparison of recordings from two nodes with identical states.

The spectrogram analysis of the two recordings is provided here in Figure 2. The two

recordings show some clear differences: both recordings have similarly noisy textures, but

the punctuations do not align in number or placement, and there are difference in their

harmonic content. The second recording is more punctuated and the harmonics move

slightly more than the first. Additionally, the first recording consistently fills the entire

spectrum while the second has several gaps in the high end of the range. What is not

completely captured in the spectrograms is that while the harmonic content and rhythm

differs between the two, the texture of both recordings is still quite similar.

4.7 Design Summary and Future Work
Now that the fundamentals of the program have been established more work can be done

to improve upon the current model. There is much room for efficiency improvements

through multithreading the collision detection as well as using more advanced OpenGL

techniques such as display lists or virtual buffer objects (VBOs) for the graphics animation.

A system for organizing, traversing, and switching between scores will be greatly beneficial

to organizing rehearsals and performances. Beat based synchronization of demand rate

synths will be a useful feature, but will require more changes to the fundamental synth

Chapter 4. Yig, The Father of Serpents 65

creation process, and potentially to the Yig synth def template.

Yig demonstrates that divergence within a network can be embraced, though there is

much more to explore for the concept. The proliferation of small electronic devices pro-

vides fertile territory for further developments, since mobile technology provides massive

potential for complicated networks with asymmetrical configurations. New music tech-

nologies can be made that offer users ways to create music that is informed by social

media and computational ubiquity. Divergence can be explored in a productive way to

enrich our instruments.

4.8 User Evaluation
Yig was evaluated in a user study involving sixteen participants who were split into pairs

and asked to engage in a musical collaboration. This collaboration was divided into two

sittings, with each sitting using a different network music system, namely, Yig, the Father
of Serpents and Max Neuhaus’s Auracle (Freeman et al., 2005). Auracle is a web based

network music system that lets players uses voice controlled synthesizers. Auracle was

selected for the study because it represents a known network music system from the liter-

ature that is designed to be quick to learn and easy to use. The participants were given ten

minutes using the first system, followed by filling out a questionnaire containing several

seven point Likert items regarding the collaboration. The participants were then directed

to collaborate using the other system for ten more minutes, followed by another question-

naire. Afterwards both participants were jointly interviewed with open ended questions

regarding the experience. The survey items and interview questions can be found in Ap-

pendix B.3 on page X. Ethics approval can be found in Appendix B.2 on page IX. In

addition to using two network music systems, half the participants collaborated in the

same room, while the other half collaborated from different rooms, without being able to

see each other or communicate through any other means than the facilities of the network

music system at hand. To mitigate the impact of order effects on the results half the groups

used Yig first and the other half used Auracle first.

4.8.1 Quantitative Results

The data derived from the participants is split into a two dimensional space containing

four quadrants (Yig/Auracle and Co-located/Distributed), with each quadrant receiving a

total of 336 responses to Likert items. This is because there were 16 participants who each

answered 21 questions for each system, (16 participants * 21 questions = 336 responses).

This group was split in half for the location dimension, with 8 participants being co-located

while 8 others were distributed, but because two systems were evaluated each session

the same number of items can also be attributed to the co-located and the distributed

groups (8 participants * 2 systems * 21 questions = 336 responses). The particular count

of 16 also guaranteed that each system was evaluated equally for both co-located and

distributed participants, lending to a balanced data set.

It was important to analyze the responses to arrive at an evaluation of Yig as compared

Chapter 4. Yig, The Father of Serpents 66

to a notable and historic example, but equally important, the study was a unique opportu-

nity to study the effects of locality on networked collaborations. The author is not aware

of any formal group study which evaluates potential differences in attitudes towards net-

worked music collaborations that are co-located and distributed. For this reasons the data

is analyzed with respect to both the systems and the locality.

The responses to Likert items are treated as ordinal data, forgoing any parametric tests.

Instead a focus is placed on using the Mann-Whitney-Wilcoxon test to verify or reject a null

hypothesis for two populations. The null hypothesis for each pair of populations (Yig/Aur-

acle and Co-located/Distributed) is that the populations have identical data distributions.

Additionally, the Bonferroni correction is used to counteract problems with multiple com-

parisons for each population. A p-value of 0.05 is used to obtain a high confidence in any

results, but to account for statistical irregularities from multiple tests resulting in false re-

jection of the null hypothesis, the Bonferroni correction states that the results must be less

than the p-value (0.05) / m, where m is the number of tests. The questionnaire contains

21 Likert items so any resulting p-value from the Mann-Whitney-Wilcoxon tests need to be

lower than 0.05 / 21, approximately 0.00238. Additionally, as the Likert item responses

are treated as ordinal data, median values are used to identify the central tendency of a

given population and the interquartile range (IQR) of the responses are used to derive a

measurement of consensus. Given that the study used a seven point Likert scale, an IQR

of less than two is considered to indicate consensus, and an IQR of greater than five indi-

cating strongly diverging opinions within a population. Finally, several of the Likert items

have a negative scale, where a strongly agreeing score would denote a strong negative

attitude. Note that these items have their results inverted during aggregated analysis, but

not in the individual analysis or in the diverging bar charts presented in this chapter and

in the appendix.

The first pair of populations considered are the results for Yig, the Father of Serpents

and Auracle. The responses are presented as diverging stacked bar charts in figures 4.8

and 4.9. Note that the full page size versions of these charts can be found in Appendix B.5

on page XX. After applying the Mann-Whitney-Wilcoxon tests (with Bonferroni correction)

roughly half the items rejected the null hypothesis. The questions that held results reject-

ing the null hypothesis, meaning that the data sets can not be said to have an identical

data distribution, are the following items:

• It is useful for music collaboration.

• It is flexible.

• I am satisfied with it.

• It is fun to use.

• I felt involved with the collaboration.

• I enjoyed the collaboration.

• I felt satisfied with the result.

• Coordination was difficult.

• I would have played longer if given
the option.

• If I were performing for an audience
just now, I would be satisfied with the
performance.

• The collaboration was gratifying.

The Yig responses for the item “It is useful for music collaboration” received a median

Chapter 4. Yig, The Father of Serpents 67

31%

19%

44%

6%

12%

19%

44%
12%

25%
38%

38%

6%

6%

6%

19%

31%

38%
6%

12%

50%

38%

38%

81%

50%

88%

81%

81%

44%
75%

69%
44%

31%

69%

94%

75%

69%

69%

56%
88%

81%

25%

62%

31%

0%

6%

6%

6%

0%

12%
12%

6%
19%

31%

25%

0%

19%

12%

0%

6%
6%

6%

25%

0%

response

The collaboration was gratifying.
I would be satisfied with the performance.
I would have played longer if given the option.
Coordination was difficult.
I felt aware of the other participant.
The other participant ignored my contributions.
I felt out of control.
I felt satisfied with the result.
I understood what was going on.
I enjoyed the collaboration.
I felt involved with the collaboration.
It is fun to use.
I am satisfied with it.
I quickly became skillful with it.
I learned to use it quickly.
Using it is effortless.
It is flexible.
It is user friendly.
It does everything I expect it to.
I don't notice any inconsistencies as I use it.
It is useful for music collaboration.

100 50 0 50 100

Percentage

Response 1 2 3 4 5 6 7

Yig Likert Items

Figure 4.8: Yig Likert Items.

6%

75%

44%

31%

31%

56%

25%
88%

31%
56%

62%

75%

50%

56%

31%

56%

88%
75%

75%

38%

44%

94%

19%

31%

38%

62%

19%

44%
12%

62%
19%

25%

19%

38%

25%

56%

25%

6%
25%

25%

31%

44%

0%

6%

25%

31%

6%

25%

31%
0%

6%
25%

12%

6%

12%

19%

12%

19%

6%
0%

0%

31%

12%

response

The collaboration was gratifying.
I would be satisfied with the performance.
I would have played longer if given the option.
Coordination was difficult.
I felt aware of the other participant.
The other participant ignored my contributions.
I felt out of control.
I felt satisfied with the result.
I understood what was going on.
I enjoyed the collaboration.
I felt involved with the collaboration.
It is fun to use.
I am satisfied with it.
I quickly became skillful with it.
I learned to use it quickly.
Using it is effortless.
It is flexible.
It is user friendly.
It does everything I expect it to.
I don't notice any inconsistencies as I use it.
It is useful for music collaboration.

100 50 0 50 100

Percentage

Response 1 2 3 4 5 6 7

Auracle Likert Items

Figure 4.9: Auracle Likert Items.

value of 6 with an IQR of 2.25. Conversely, Auracle received a set of responses with a

median of 3 and an IQR of 2.5. Both IQRs indicate that there was disparity in the attitudes

of the users regarding the statement. Given the wide disparity in median results and the

verification of significant results from the Mann-Whitney-Wilcoxon test, Yig is shown to

be broadly considered to be more useful than Auracle for music collaboration by more

users, albeit without a strong consensus from either population. These results are similar

for the statement “It is flexible”, where Yig received a median of 5.5 and an IQR of 2, and

where Auracle received a median of 3 and an IQR of 2.25. There is a measured increase in

consensus, but the result is similarly that generally participants considered Yig to be more

flexible than Auracle, but with divergence in the population.

The statement “I am satisfied with it” received stronger result than the previous two

Chapter 4. Yig, The Father of Serpents 68

statements. Yig held a median value of 6 with an IQR of 1 and Auracle received a median

of 2 with an IQR of 1.25. These result show that users felt decidedly more satisfied with

the the collaboration using Yig than Auracle and that there is a high degree of consensus

with that attitude. The statement “It is fun to use” measured an even stronger response

for Yig, with a median value of 7 and an IQR of 1. The Auracle results for this item are

much less definitive, with a median of 3.5 and an IQR of 3. Yig is shown to be considered

fun to use with a strong degree of consensus, where as Auracle response were mixed and

generally neutral.

The results for the previous statements start to identify a trend, where users are shown

to have more positive attitudes to Yig than Auracle as an enjoyable system. The results

for the statements “I felt satisfied with the result” and “If I were performing for an au-

dience just now, I would be satisfied with the performance” corroborate that trend. Yig

received median values of 5 for both statements and an IQR of 1.25 and 3.25 respec-

tively. These responses indicate that attitudes about the music created using Yig were

moderately positive with strong consensus about the satisfaction about the results, yet

with diverging consensus regarding those results being presentable to an audience. This

divergence demonstrates that participants can be be satisfied with musical results but that

there is a subsection who have separate criteria for results that are performance worthy.

Auracle similarly elicited strong attitudes, but instead, strongly negative attitudes for the

two statements. There is a strong consensus that Auracle does not produce musically sat-

isfying results, having received medians of 2.5 and 1, and IQRs of 1.25 and 1 respectively.

Considering the results for all the previous statements, while there is some degree of di-

verging opinions, the larger consensus is that Yig produces a more enjoyable and satisfying

musical experience than Auracle, as measured by responses to the previously mentioned

statements.

The data confirms a musical consensus, but in order to understand the attitudes of

these systems for producing satisfying collaborations the remaining statements from the

list above need to be considered. The strongest result is for the statement “The collabo-

ration was gratifying” where Yig received a median score of 6 with an IQR of 1.25, and

Auracle received a median of 3 with an IQR of 1.5 These show much more positive atti-

tudes for Yig than Auracle for collaboration. This is further supported by the statement

“Coordination was difficult” where Yig received a median value of 4 with an IQR of 2.

while this is one of the worst scores for Yig, Auracle scored a median value of 6 with an

IQR of 0.5, indicating a very strong consensus that Auracle coordination using Auracle was

difficult. Across all of the statements where the Mann-Whitney-Wilcoxon test indicated a

significant result Yig’s worst reported scores were neutral and by contrast Auracle’s best

performing results were neutral.

The previous data analysis establishes a case where participants held more positive

attitudes for Yig than Auracle. Still, there were roughly half the questions where the

Mann-Whitney-Wilcoxon test did not reject the null hypothesis, indicating identical or

highly similar data distributions for the two population. The items that failed to reject the

null hypothesis include:

Chapter 4. Yig, The Father of Serpents 69

• I don’t notice any inconsistencies as I
use it.

• It does everything I expect it to.

• It is user friendly.

• Using it is effortless.

• I learned to use it quickly.

• I quickly became skillful with it.

• I understood what was going on.

• I felt out of control.

• The other participant ignored my con-
tributions.

• I felt aware of the other participant.

For these questions it is not useful to compare the results between the two systems,

but it useful to consider notable data points where the responses are in accordance about

the two systems. Generally most of these questions received neutral medians with a lack

of consensus, such as “I don’t notice any inconsistencies as I use it” where Yig and Auracle

received a 4 and 4.5 median score, both with an IQR of 2.25. Given a lack of consensus

in the populations about both systems, it can only be said that attitudes were varied for

both systems regarding inconsistencies. Another example is “I felt out of control” where

the attitudes were diverse (Yig M=4, IQR=3 and Auracle M=4, IQR=1.25). There were

however several statements where both Yig and Auracle scored favorably. These include

“It is user friendly”, “I learned to use it quickly.”, and “I felt aware of the other participant.”,

all with median scores of 5 to 6, although with a range of IQRs.

Comparing the entire population for Yig and Auracle using the Mann-Whitney-Wilcoxon

test produces a p-value of 2.2×10−16, which is much lower than the required threshold

of 2.381×10−3 for a result to reject the null hypothesis. Yet, this only indicates that there

is some difference in their distribution, so to find what that difference is the Likert items

were aggregated to create overall results for the entire Likert scale for each participant.

This was calculated by averaging the scores given to each question by an individual, but

not the results of a single Likert item, which was treated as ordinal data. After calculating

these Likert scale scores the median and standard deviation of these aggregates was cal-

culated. Yig received a mean aggregated scale score of 4.961 with a standard deviation

of 1.169 and Auracle received a mean of 3.432 with a standard deviation of 1.134. These

values demonstrate that while many individual items presented starkly different attitudes

to Yig and Auracle, as a whole the two are not as dramatically different regarding their

overall assessment. Yet, Yig still leads Auracle with a generally positive attitude from the

surveyed respondents where Auracle scored as slightly negative.

Moving on from the first two populations, Yig and Auracle, the next pair of popula-

tions are the co-located and distributed groups. The responses are presented as diverging

stacked bar charts in figures 4.10 and 4.11. The full page size versions of these charts can

be found in Appendix B.4 on page XXIII. After applying the Mann-Whitney-Wilcoxon tests

(with Bonferroni correction) none of the individual Likert items rejected the null hypothe-

sis. The individual analysis of the Likert items tells a similar story, where most of the items

received neutral scores or had high IQRs indicating a lack of consensus. The only item

with a non-neutral median and with general consensus was the item “I felt aware of the

other participant.” Participants generally agreed with the statement for both co-located

and distributed groups, indicating that physical presence may not be a requirement for a

Chapter 4. Yig, The Father of Serpents 70

sense of awareness in these kinds of network music systems, but that it also is not neces-

sarily detrimental to it either.

12%

56%

62%

25%

31%

56%

38%
56%

38%
75%

62%

44%

31%

38%

25%

56%

62%
50%

56%

44%

50%

62%

38%

25%

56%

56%

38%

38%
38%

56%
19%

12%

38%

56%

50%

56%

38%

31%
44%

38%

25%

44%

25%

6%

12%

19%

12%

6%

25%
6%

6%
6%

25%

19%

12%

12%

19%

6%

6%
6%

6%

31%

6%

response

The collaboration was gratifying.
I would be satisfied with the performance.
I would have played longer if given the option.
Coordination was difficult.
I felt aware of the other participant.
The other participant ignored my contributions.
I felt out of control.
I felt satisfied with the result.
I understood what was going on.
I enjoyed the collaboration.
I felt involved with the collaboration.
It is fun to use.
I am satisfied with it.
I quickly became skillful with it.
I learned to use it quickly.
Using it is effortless.
It is flexible.
It is user friendly.
It does everything I expect it to.
I don't notice any inconsistencies as I use it.
It is useful for music collaboration.

100 50 0 50 100

Percentage

Response 1 2 3 4 5 6 7

Co−located Likert Items

Figure 4.10: Co-Located Likert Items.

25%

38%

25%

12%

12%

19%

31%
44%

19%
19%

38%

38%

25%

25%

25%

31%

62%
31%

31%

44%

31%

69%

62%

56%

69%

88%

62%

50%
50%

75%
44%

44%

50%

75%

50%

69%

56%

31%
69%

69%

31%

62%

6%

0%

19%

19%

0%

19%

19%
6%

6%
38%

19%

12%

0%

25%

6%

12%

6%
0%

0%

25%

6%

response

The collaboration was gratifying.
I would be satisfied with the performance.
I would have played longer if given the option.
Coordination was difficult.
I felt aware of the other participant.
The other participant ignored my contributions.
I felt out of control.
I felt satisfied with the result.
I understood what was going on.
I enjoyed the collaboration.
I felt involved with the collaboration.
It is fun to use.
I am satisfied with it.
I quickly became skillful with it.
I learned to use it quickly.
Using it is effortless.
It is flexible.
It is user friendly.
It does everything I expect it to.
I don't notice any inconsistencies as I use it.
It is useful for music collaboration.

100 50 0 50 100

Percentage

Response 1 2 3 4 5 6 7

Distributed Likert Items

Figure 4.11: Distributed Likert Items.

The co-located and distributed Likert item results were compared as a whole similarly

to the Yig and Auracle groups, first by running the Mann-Whitney-Wilcoxon test and then

by aggregating the Likert scale scores. The Mann-Whitney-Wilcoxon test on these two

populations produced a p-value of 4.237×10−7, enough to reject the null hypothesis. No

single Likert item for these two groups was able to meet the requirements to reject the

null hypothesis, yet the overall scores for the populations was enough. After aggregating

the individual participants scale scores, the co-located group received a mean Likert scale

score of 3.818 with a standard deviation of 1.343 and the distributed group received

an aggregated mean of 4.929 with a standard deviation of 1.339. It is of note that the

Chapter 4. Yig, The Father of Serpents 71

distributed population performed slightly better (generally favorable) than the co-located

group (generally neutral), which suggests that physical presence may not be a requirement

for positive assessments of network music collaborations using systems such as Yig and

Auracle. No single Likert item for these two populations met the requirements to reject

the null hypothesis, so to better understand some potential reasons for why this is the case

will require the qualitative analysis presented in the next section.

4.8.2 Qualitative Results

Each pair of participants were interviewed at the end of the evaluation session. Regardless

of if the pairs collaborated co-located or distributed, the interview took place with both in

person, where they were presented with the following eight questions:

• Briefly, could you describe your general opinion of the collaboration?

• How do you think the collaboration would have differed if you were in separate
locations or the same location?

• How did the software effect your ability to develop musical ideas?

• How would you compare the anxiety of a normal performance with the anxiety from
the collaboration that just happened?

• Would you be interested in this kind of collaboration in the future? Why or why not?

• Can you describe the most negative aspects of the collaboration?

• Can you describe the most positive aspects of the collaboration?

• Are there any further comments you wish to make?

Participants were directed to answer openly, and to allow for any natural flow of con-

versation that stemmed from each question. The answers to these questions were analyzed

for themes using the methodology as defined by Braun and Clarke (Braun & Clarke, 2006).

According to the methodology an initial set of codes should be developed by annotating

the responses where small atoms of sentiment or concept are identified and labeled. By

grouping codes together candidate themes are created, combined, or discarded. The codes

developed for this evaluation can be found in Appendix B.4 on page XII.

Adding another layer of complexity to the analysis is the quadrant framework, where

Auracle and Yig as well as co-location and distribution have to be considered when devel-

oping themes. The questions asked do not directly address either network music system,

instead allowing for the participants to make any connections to the systems organically.

By contrast, the relationship between co-located and distribution was directly referenced

in the second question. Pairs of respondents had the opportunity to use both systems but

collaborated only as either co-located or distributed. As the topic of distribution was of

specific interest, this small effort was made to get the thoughts of the participants on the

subject. While it is useful to group emerging themes into sections of this quadrant, it was

important not to be overly ambitious about separating themes. Unlike the Likert items in

the quantitative analysis, often responses cannot be simply and cleanly categorized into

Chapter 4. Yig, The Father of Serpents 72

groups. Most of the interview questions were open about subject matter and answers

from the participants could be vague or transition and change mid sentence. For this

reason themes were identified and developed within identified contexts, but often these

themes were emergent across boundaries and without a specific population axis as the

source.

Several major themes were identified, but first Yig and Auracle will be addressed, be-

fore moving on to themes regarding co-location and distribution. There were a wide range

of opinions and sentiments about Yig and Auracle, but by approaching these statements

methodically a series of themes were developed. First, a strong theme emerged that the

format of the evaluation inhibited developing a deep understanding of either Yig or Aura-

cle. Both systems attempt to create an interface that is intuitive even for users who do not

consider themselves musicians, yet a repeated concern was that the limited time frame

was in part prohibitive. A shared opinion was that practice and time would make using

either system more enjoyable through increased proficiency. This proficiency would allow

for a more direct connection between intent and results. Often participants spent a large

part of the allotted time learning the interface and rules of the systems, before meaning-

fully being able to concern themselves with more sophisticated observations such as the

utility of the system as an instrument. This observation needs to be considered when eval-

uating both the results from the quantitative analysis as well as the proceeding themes

discussed later. Evaluations by both new and experienced users provide useful data. For

that reason, the next chapter will feature an evaluation of a different system by network

music performers who draw upon the experience of several performances.

Another theme was that there were technical issues that effected both Auracle and

Yig. Yig was reported to have disappearing objects and even a reported crash. Participants

reported that Auracle would occasionally stop responding to input. While these bugs

caused some issues, generally users did not consider them to be overly distracting. One

participant noted that “If you write software yourself, it’s going to have bugs in it, I mean

it’s not a piece of commercial software.”

Opinions varied greatly regarding the ease of use and intuitive design of both systems.

Auracle was noted as having a direct connection from vocal input to sonic output, as

well as having an immediacy in that connection. One participant states “Auracle, was

clearer because I knew I made a noise and it translated to a different noise.” Many other

users noted that while the apparent connection was obvious, the relationship between

input and output was not. One user bemoans this behavior, saying “...maybe I want it to

approximate something like that but it doesn’t really correlate to what I’m doing vocally.

It’s just kind of a crapshoot.” and another “The first one (Auracle) didn’t make any god

damned sense.” This was exacerbated by the users’ feelings that there was too long of a

lag between input and results. On the other hand several users felt that Yig lacked a clear

connection between user inputs and results or that it was not immediately obvious how

to make connections between running synths. A participant explains, “So I wasn’t quite

sure all the time what happened if I was doing something that was actually changing

something in the sounds.” Others noted that they felt it was more intuitive than Auracle,

Chapter 4. Yig, The Father of Serpents 73

and that the interface better reinforced actions and the actions of the other collaborator.

A user explains “The visuals on the second one (Yig) were super easy to understand. This

feeds into that which feeds into this.” Indeed, graphical representation was a small sub

theme that emerged regarding the collaborations. Auracle’s spectral display was regarded

as lacking: “the first one (Auracle), the graphic visualization of the sound is just far too

abstract to understand as someone who doesn’t have a lot of experience.”, and by contrast

Yig was lauded as reinforcing the collaboration because of the graphical implementation:

“because it’s just like you sort of drag it over, it’s easier to sort of collaborate with that

than the Auracle one.”

While there was no great consensus regarding ease of design, there was largely a

consensus regarding the resulting sounds and music that was created during the sessions.

Generally Auracle was panned as having a limited and uninteresting sonic palette. When

asked about the effect of the software on musical ideas, one participant asserts “I don’t

think Auracle gets there as far as where it’s worth asking the question”. Another user

felt similarly that “Auracle definitely feels more like a toy than an instrument.” Another

user remarks about the sonic range “...then I realized it just made one sound, then it

got less fun again.” Although, some users enjoyed output, for example this user who

found a technique for local feedback “I was recording yours as the same time you were

recording mine that was quite cool.” On the other hand many users felt that Yig produced

surprisingly interesting results. One user excitedly exclaimed “we’d like be connecting

stuff and suddenly it’d be like a strange sound and I would be surprised like, like, shit

that’s fucking awesome.”

Regarding the implications of locality of the collaborations, attitudes were diverse and

occasionally conflicting. The quantitative analysis revealed that the participants did not

favor co–location over distribution, which is the traditional approach to collaboration. The

diverse and conflicting opinions could account for a lack of definitive quantitative results.

Communication is one aspect of collaboration that is greatly effected by distribution. The

innate communication channels found in co-located situations was argued by some to

be a useful tool. For example, “The good thing about being in the same room is we

could talk to each other about what we found out.” Other uses felt the distribution was

detrimental or unusual, such as the user who said “I feel pretty akward just sitting alone

and making noise.” By contrast there was a running theme that distribution may actually

be desirable. When one user recalled that upon realizing Auracle required vocal control,

they were “quite relieved in a way to be in a different room.” Another user stated that

“...for uh, Auracle I think that it would not work at all if you were in the same location”

The requirement for vocal control may be an innervating source, and may also be partially

responsible for scores to slightly favor distribution over co-location in the quantitative

analysis. Other users, from both co-located and distributed populations, felt there would

be no difference if the locality was changed, from co-located to distributed, or vice versa.

As a participant said, “I was pretty glued to the screen. It wouldn’t have made much

of a difference.” Additionally, most users neglected to use the chat capabilities of either

music system. Co-located users would occasionally speak to each other or make visual

Chapter 4. Yig, The Father of Serpents 74

contact. Yet distributed users, lacking this channel for communication, did not turn to the

available alternative. Instead, their sentiment is echoed by the comment that “I was too

busy exploring that to actually type like ‘Hey, let’s do this.”’

Several other themes regarding collaboration emerged from the interviews. Yig uses a

two dimensional space where circles in this space represent running synths. Furthermore

there were only limited constraints on control input for these running sounds. While a

particular user is controlling a specific synth no other user can move or delete it. Once

they stop controlling it, that synth is open for any user to control. One theme that emerged

is that in this virtual space there is some innate sense of etiquette and ownership regarding

these circles. One user explained some self restraint when using the system, “And I also

felt, about the second software, actually I wanted to delete some object but I didn’t since he

made it, so it might be rude.” Another participant who accidentally deleted all the running

synths at one point during the session, apologized to the other user in the interview, saying

“Sorry I deleted everything. (laughs)” This digital space was not safe from good humored

‘trolling’, and one user reveled in their slight digital transgression by jesting “Yeah, it was,

um, more fun trying to stop you from doing anything (laughs). Like putting one of your

little circles so that you couldn’t reach it, that was quite fun.” Several users expressed

some desire to have more independence during the collaborations, and several comments

were made about the desire to have a mute function. Yet others enjoyed the serendipitous

collisions of intent that fostered discovery, with one user noting that “...there were things

kind of discovered by accident so like when I move my mouse at the same time as yours

and then we got that random connection by mistake”

Overall the qualitative analysis supports the quantitative results. Yig was favored over

Auracle for music collaboration, but both were offered criticism, especially concerning in-

tuitive design. Two reasons that Yig performed better include a better graphical represen-

tation of the collaboration, and the observation that it fostered co-discovery. Additionally

the sonic output was regarded as more interesting and more viable for consideration as

an instrument. Regarding locality, the results were similarly mixed as with the quanti-

tative results. Opinions varied and the data suggests that their is no clear indicator for

preference in the two populations. Advantages were noted for both approaches, as well

as disadvantages. Finally, etiquette and ownership were two emergent themes that could

not be found in just the Likert item analysis. Some ‘real world’ principles were transposed

into the virtual space. This was especially true for Yig, where the locality of presence may

be an impetus for feelings of embodiment.

Chapter 5

An Interactive 3D Networked
Music Space

Chapter 5. An Interactive 3D Networked Music Space 76

5.1 Introduction
Shoggoth is a new network music program for real–time group performance with members

distributed over potentially global distances. As a reference to the strange protoplasmic

beings described in H.P. Lovecraft’s At the Mountains of Madness (H.P. Lovecraft, 1931),

Shoggoth allows users to reshape polymorphic terrains to create generative music in col-

laboration. The program is designed with a user interface that is both functional and

highly visual. A video of Glitch Lich performing with Shoggoth at the 2013 Network Music

Festival in Birmingham, UK can be found at https://vimeo.com/94046155. The interface

design allows for an aesthetically pleasing presentation that serves to both enhance com-

munication in the ensemble as well as provide a visual representation of performer actions

to the audience. This is important because performances with physically separated ensem-

bles present a unique stage presence where parts, and possibly all, of the group can only

be represented through digital media. The separation in distributed ensembles amplifies

several issues in traditional computer music performance, such as a lack of correlation

between physical effort and sonic results. Furthermore, distributed ensembles lose funda-

mental components of communication such as visual cues and gestures.

These issues are not new (Berio & Dalmonte, 2007; Wessel & Wright, 2002) and there

is a growing range of techniques and technologies which seek to mitigate or embrace

these features of electronic music. Controllers and interfaces are a popular solution for

computer musicians to reestablish or re-imagine the performance characteristics of tradi-

tional instrumentalists (Morris, 2008; Rebelo, 2006; Wilson-Bokowiec & Bokowiec, 2006).

These interfaces lose value in networked performances if members are in different loca-

tions from each other or from an audience. Concerts in many forms, from experimental

computer music in smaller clubs to popular music stadium shows, are now commonly per-

formed with accompanying visuals to augment stage presence (Sexton, 2007; Brougher,

Strick, Wiseman, & Zilczer, 2005). While there may be useful benefits from adding the

visual medium, if the presentation isn’t communicative of the non-present performers,

their contributions will be deemphasized or lost entirely. For this reason network perfor-

mances are occasionally realized using video and audio streaming between performance

sites (Chafe et al., 2000; Sawchuk et al., 2003; Gresham-Lancaster, 2007). Latency and

quality of connectivity are ever present concerns, and if performers aren’t using tradi-

tional instruments or physical controllers then the same issues regarding computer music

performance outlined earlier will still be present.

This is where virtual spaces can serve a useful role. Networked performances, dis-

tributed or not, that are performed in virtual spaces communicate performers’ efforts while

simultaneously increasing ensemble communication. Consideration must be given to both

usability and presentation and a balance must be struck to facilitate a successful perfor-

mance space. Video games are a natural source of inspiration, with their sprawling and

detailed worlds, the largest of which are developed utilizing multi-million dollar budgets

and over a period of several years. Music has been an important component of video

games since the beginning and game music has become ingrained in our culture. Despite

this, music has usually served a secondary role, similar to it’s usage in movies to set the

Chapter 5. An Interactive 3D Networked Music Space 77

tone of a scene or level. Game music is commonly adaptive, not interactive, because there

is usually no direct connection between player actions and changes in the music (Collins,

2008). Sound effects are the actual interactive components in a game, such as the trig-

gering of a jump sound based on a button press. There is often some correlation between

game state, such as the adjustment of tempo according to a game boss’s life.

There is a history of utilizing games or game like worlds in music and sound art. A

common approach has been to appropriate or modify an existing game for use in a work.

Cory Arcangel’s Nintendo cartridge hacks, including his celebrated Super Mario Clouds,
and Tom Bett’s glitch inducing quake engine modification QQQ are two examples of how

an existing game can be appropriated to produce results never intended by their design-

ers (Bittanti & Quaranta, 2006). Both modify the source code for a game, fundamentally

altering it’s logic, and creating something new. Not all game appropriations are as subver-

sive. Rob Hamilton’s work Maps and Legends (Hamilton, 2007b, 2007a) built using q3apd
(Oliver & Pickles, 2002), a Quake III modification by Julian Oliver and Steven Pickles, is a

network composition performed in virtual space. Player states such as position and view

angle, and weapon selection, as well as certain actions such as jumping and firing are

mapped using OSC to control a Pure Data patch (Chung, 2013). These mappings allow

Hamilton to use the core logic of the Quake engine as the framework for a networked

virtual performance.

In Shoggoth, instead of using an existing game engine, a new one was written specif-

ically for the purpose of network music performance. This allowed for the customization

of a system that attempts to find the right balance between usability, musical control, and

visual aesthetics. The following section discusses system design and philosophy, as well as

some technical aspects of the implementation. Next the system is categorized using estab-

lished frameworks with a subsequent examination of the role of virtual spaces in music

performance. Finally, informal assessments from two experienced Shoggoth performers

are considered.

5.2 Design Philosophy
The basic design goal of Shoggoth is to have an emmersive virtual space for collaborative

performances of harsh rhythmic music. As with Yig, Shoggoth was designed for Glitch

Lich performances. The key design requirements are distributed performance support,

communication support, autonomy, a virtual space, and visualization. Similarly to Yig,

Shoggoth supports distribution with all clients rendering the full audio output. Shoggoth

also supports a simple chat system for communication. The autonomy in Shoggoth is

similar to Yig, using feedback to create emergent behavior.

For a virtual space Shoggoth supports a full three dimensional environment with key-

board and mouse based camera position and rotation. In this way Shoggoth’s design is

largely inspired by first person video games. Glitch Lich’s previous systems, such as Yig,

demonstrated increasingly graphical interfaces, often accompanied by a separate visual-

ization program. This approach has worked well, although it also meant that audiences

Chapter 5. An Interactive 3D Networked Music Space 78

Figure 5.1: One possible terrain shape in Shoggoth. The heightmap defining the shape of the
terrain is also used for the buffers of the wave terrain ugens in the running synths.

were not presented with the same visual information as the performers. The design goal

of Shoggoth is to create an interface that is aesthetically rich while functioning as the

interface through which the musicians collaborate.

Similarly to Yig, the design produces an interface with unavoidable trade–offs. Using

a perspective camera in a 3D space introduces new issues regarding field of view. Where

as in Yig each performer could see everything, in Shoggoth, each performer has their own

perspective which can exclude large parts of the performance area. This makes it more

difficult to be aware of what the other performers are doing at any given time. This also

effects the projection for the audience. Shoggoth performances all used the video output

of just one computer, often because the performance was distributed and only one of

the performers was actually at the venue. This meant that the view of the performance

was limited to one performer. A specific spectator mode for Shoggoth (and other 3D

performance interfaces) similar to spectator mode in games like Defense of the Ancients 2
would help mitigate these problems for the audience (Valve, 2016).

5.3 The Interface
Shoggoth is written in C++ and uses the Cinder framework (Rijnieks, 2013) for the graph-

ics implementation. On startup the view comprises of a grid of flat black square islands

suspended in white space. Users can fly around the space by employing controls similar

to a first person shooter (FPS) game, but there is no gravity or physics. The flat grids are

vertex buffer objects (VBOs) (McReynolds & Blythe, 2005) comprising of a triangle mesh

Chapter 5. An Interactive 3D Networked Music Space 79

Figure 5.2: Glitch Lich performance of Shoggoth at /*vivo*/.

bound with important data such as color and identification numbers. The grids can be ma-

nipulated using a selection of number keys that trigger a morphing animation into various

shapes dependent on one of several generative processes. These processes are each based

on a particular algorithmic model, enumerated as as (0) Blank, (1) Diamond Square, (2)

Cellular Automata, (3) Strange Attractor, (4) L-System, and (5) Flocking. Each process

results in a height map and a series of intermediate steps are constructed between the

existing mesh and the new version. Using a queued update system the mesh is updated

each frame, incrementing through a thirty step animation list, until the final version of the

mesh is reached. Earlier versions of Shoggoth did not have animations between meshes

and for that reason mesh transitions were jarring, which inspired the added feature. Ani-

mations not only create smooth changes and striking visual effects, but also allow for the

audio sequencing to follow the interpolation as well.

A triangle can be selected using 3D picking (Shreiner, 2009a), from the grid of a terrain

mesh for sequence path creation or manipulation. 3D picking is a technique that allows

users to select something in 3D space using 2D coordinates, usually via a mouse con-

trolled camera view. 3D picking was implemented in Shoggoth using a graphics technique

whereby the terrain meshes are rendered at a lower resolution into a frame buffer object

(FBO) (Shreiner, 2009b), which is never shown to the user, and each triangle in each ter-

rain mesh is colored according to a global identification system. When a picked triangle

is requested, the color of the pixel in the exact center of the FBO is selected and then

only has to be translated from an RGBA (reg, green, blue, alpha) value into an unsigned

integer, resulting in the selected triangle’s global identification number. This proved to be

invaluable as each terrain contains over 10,000 triangles and previous attempts using ray

casting were unusably slow.

A path can be created from a sequence of triangle picks, and once outlined, a read head

Chapter 5. An Interactive 3D Networked Music Space 80

Figure 5.3: Wireframe render for an island terrain, demonstrating the triangle mesh and high
polygon count.

immediately follows on the path, triggering and modulating monophonic synth instances.

A triangle in the mesh of an island has two possible states: black (inactive) or white

(active). If the triangle is active when a read head passes over it, then a coordinating synth

is triggered, resulting in an opening of the envelope gate and an update to the parameters

of the synth according to the triangle’s height and location in the grid. Triangles are

activated or deactivated according to a similar set of generative processes as the height

map, and are triggered using the same number keys, but with the shift key pressed as well.

Player representation and communication are important in network music perfor-

mance and Shoggoth has some simple, but effective, designs to facilitate them. Players

are represented using minimalist tetrahedron models, which aren’t complicated, but align

well with the triangle based theme of the islands. Position and rotation information is

mapped allowing performers to see not only where each other are, but what they’re look-

ing at, and the immediate results of their actions. This is an upgrade from the authors’

previous systems where either no representation was made or only position data was rep-

resented. A chat system has been created to allow for communication, both with the other

performers and the audience, and uses a multi-player game style 2D overlay.

5.4 Sound Design
Sound in Shoggoth is implemented using the SuperCollider (McCartney et al., 2016) libsc-

synth library in conjunction with libsc++ (McKinney, 2013a) to create an internal server

built natively into the C++ application. Because the server is built internally, no exter-

Chapter 5. An Interactive 3D Networked Music Space 81

Figure 5.4: Multiple islands with sequences. The red area on the bottom left islands is a looping
sequence that triggers synth onsets.

nal messaging is necessary, and all communication with the scsynth server and Shoggoth

occur through native function calls. Shoggoth will fail completely without any hanging

servers in the event of a crash, but if the server was running as a separate process on the

local machine this would not be the case. Maintaining independence of the sound server,

language, and now the IDE is a favorable characteristic of SuperCollider as an audio lan-

guage. That level of independence is not favorable when distributing a program to users

who may not be knowledgeable about the subtleties involved with multiple processes.

Synth design in Shoggoth is focused on the usage of wave terrain synthesis (Roads,

1996). Each synth definition utilizes at least one wave terrain oscillator that reads a buffer

filled with the same 2D height map that defines the shape of the terrain that the synth’s

sequence resides on. This is a essential feature because it allows the terrains to effect not

just the sequential triggering of synth instances or the modulation of synth parameters, but

also to define the most fundamental components of the synths’ timbre. Each generative

process, such as the cellular automata, have a characteristic harmonic palette that forges

a strong connection between the visuals and the sound. Furthermore, when the island

meshes morph into new forms, the animation effects not only the visuals display, but also

updates any running synths as well, creating a dramatic timbral shift.

Synth definitions must be compiled against the same version of the SuperCollider syn-

thdef format that Shoggoth is compiled against. This creates a dependency on either

SuperCollider itself or some other environment that can compile SuperCollider synth def-

initions. This might change given development in the libsc++ library that could allow for

native or scripted synthdef compilation in Shoggoth itself. Even given this dependency,

Chapter 5. An Interactive 3D Networked Music Space 82

Figure 5.5: Three looping sequencers on an island. When the sequencers land on white triangles
a synth onset is triggered.

SuperCollider is an excellent choice for sound design because it has an established code

base with years of active development and supplies a well defined and terse interface for

synthesis. Shoggoth can be used to create a wide range of sonic output, but given the loop-

ing sequential infrastructure and the often aggressive waveforms produced by the wave

terrain synthesis, rhythmic noise is the most natural end result. While this style of music

may not appeal to all, generative and networked music audiences are often interested in

more experimental music.

5.5 Networking
The Shoggoth network implementation is very similary to Yig, using Open Sound Con-

trol (Wright, 2002) messaging with OSCpack (Bencina, 2013) to create and receive OSC

packets and the OSCthulhu (McKinney & McKinney, 2012) server and client framework

to synchronize state. In Shoggoth there are eight types of information networked: Player

position, player orientation, terrain height maps, terrain step grids, sequence positions, se-

quence sizes, synth selections for sequences, and chat. This group contains a wide variety

of data from character strings to high volume meshes. The terrain meshes proved to be the

most challenging to network initially. Synchronizing 10,000 triangles with 3 points each

as well as the step grid was daunting, inspiring odd attempts to reduce bandwidth such

as using LZMA compression (Salomon, 2006). The solution was limiting and ultimately

unused. Instead of manually synchronizing each triangle, instead the settings and random

seed used to generate a given terrain mesh and step map were synchronized, allowing

for an incredibly small amount of information to guarantee state across the network. The

drawback is that manual deformation of the terrains had to be removed, leaving only the

Chapter 5. An Interactive 3D Networked Music Space 83

generative processes able to create and manipulate the islands. This changed the nature

of the performance from guided intentionality to fast experimentation, but the reduction

in bandwidth was extremely beneficial.

Player position and orientation were easy enough to network, but using seven argu-

ments per user to define them (3 for position, 4 for quaternion defined rotation) some-

times generated asynchronous updates for their individual components and unnecessary

traffic. This problem led to the use of bitpacking to package updates together. Using

bitpacking the X/Y/Z components of the position of a player can be packed into a single

integer value, as well as the W/X/Y/Z components of their rotation, reducing traffic while

simultaneously enforcing unified updates. The same technique was used with the afore-

mentioned island states. All the settings including the process number and random seed

are packed into a single integer so that there is a guaranteed success or failure of an up-

date. This prevents scenarios where only a portion of the information needed to update an

island is received, while the others might be lost, resulting in an incorrect state. Because

of these efforts, Shoggoth’s networking is precise and fast despite the large amount of

information represented on screen and even while using low quality wireless connections.

5.6 Categorization
As in the previous chapter with Yig, here is a set of classifications of Shoggoth according

to several network music taxonomies including Alvaro Barbosa’s network music classifi-

cations (Barbosa, 2003), Andrew Hugill’s internet music taxonomy (Hugill, 2005), Gil

Weinberg’s enumeration of network configurations, Golo Föllmer’s twelves types of net

music (Föllmer, 2005) and Thor Magnusson’s epistemic dimension space (Magnusson,

2010). Starting with Barbosa’s network music classification, Shoggoth is similar to Yig in

this taxonomy. While Shoggoth has the capacity to support asynchronous interaction, the

system was designed for synchronous collaborations and performances, and lacks impor-

tant features for asynchronicty such as state storage and recall. On the other hand the live

configurations of patterns and synth parameters coupled with the client and server archi-

tecture highly encourages synchronous interaction. Similar to Yig, Shoggoth can be used

both locally and remotely, as the networking was written to handle large distances. Simi-

lar to Yig, local performances may benefit from using a single computer’s output for signal

as some highly chaotic feedback sounds can producte different results across machines,

although this may be an aesthetic choice as the layering may be considered to be a useful

dimension to the performance. Barbosa labels music that has synchronous interactions

but with local and remote locality as ‘Shared Sonic Environments’, which is especially apt

given the three dimensional virtual space that Shoggoth performances inhabit.

Next, with Hugill’s Internet music taxonomy, Shoggoth sits well in the second category

of music that is Created or Performed in Virtual Environments, or Uses Virtual Instruments.
Convincing arguments could be made that Shoggoth also facilitates music that Uses the
Internet to Enable Collaborative Composition or Performance, but the defining features of

Shoggoth align more closely with most of the pieces that could fit into Hugill’s second

Chapter 5. An Interactive 3D Networked Music Space 84

category than his fourth.

As with Yig, Shoggoth uses the ‘Flower’ or ‘Synchronous Centralized Interaction‘ net-

work configuration, as listed in Gil Weinberg’s network topologies. This configuration is

useful as it provides a stable and standardized structure for network traffic, as well as

provides a way for users to easily collaborate from behind firewalls, avoiding many of

the technical issues with facilitating direct peer to peer communication. Similar to Yig

though, the configurations of messages, feedback, and control flow is much more compli-

cated, and these kinds of connections and interdependencies can form some of the more

odd and exotic configurations in Weinberg’s collection.

Föllmer’s taxonomy is much more complicated than Hugill’s and requires more con-

sideration. There are many similarities between Shoggoth and Föllmer’s description of

the Algorithmic Installations type, but the emphasis on an installation as opposed to per-

formance does not afford an easy fit. With that consideration, the Performance cluster,

number 5, is the most natural, leaving a choice between Network Performances and Staged
Projects types. Shoggoth makes no use of librettos or text and therefore Staged Projects
makes little sense, leaving type K Network Performances in cluster V Performance.

expressive constraints

autonomy

music theory

explorability

required knowledge

improvisation

generality

creative-simulation

m
uch

much

m
uch

m
u

ch

easy

much

Shoggoth

Figure 5.6: Shoggoth in the epistemic dimension space.

In figure 5.6 Shoggoth is plotted in Magnusson’s epistemic dimension space similar to

Chapter 5. An Interactive 3D Networked Music Space 85

Yig in the previous chapter. Shoggoth is most similar to the ReacTable (Jordà, 2009), when

compared to the list provided in figure 4.5. While Shoggoth is marked as having more au-

tonomy than the ReacTable (because of the extended use of generative processes), they

both impose significant constraints on expression, while lacking generality and inherent

music theory constructs. Instead, both the ReacTable and Shoggoth emphasize improvi-

sation in a creative and unique interface. In contrast, Reason contain more music theory

infrastructure, and Max/MSP has more depth of explorability.

5.7 Performance in Virtual Space
Video game culture provides a useful reference for digital spectator events. The youngest

generations have been raised in an era of video games and the internet, giving rise to

online eSports such as Star Craft and League of Legends (Taylor, 2012; Jin, 2010). These

games are not just for bragging rights and the winners stand to win hundreds of thousands

of dollars in front of thousands of fans (Benedetti, 2012). Virtual music (Duckworth,

2013) performances have not yet reached this level of acceptance, but the concept has

been proven that there is a potentially large audience for virtual performance.

There are many similarities between an online battle and an online musical perfor-

mance (perhaps even an online music battle). The two are often group events and the

depiction of embodiment is important to spectators. But where games have concrete goals

and rules that dictate their achievement, musical performances have compositions and

improvisations with a wide range of constraints and goal orientation. There are other

considerations, such as the embodiment of the performers and their portrayal, or lack

thereof, of physical and emotional state. These have an important role in how a perfor-

mance is perceived by an audience, and by the performers themselves (Deutsch, 2012). If

virtual music performances are to attain the popularity of virtual sports, more work will

need to be put into the systems and infrastructure that supports those performances.

Online games such as Star Craft have budgets that rival hollywood movies, but more

importantly there is a depth to the software that is simply missing in network music sys-

tems. For example the players in Shoggoth are represented as simple tetrahedron with

only position and rotation as defining features. Characters in a video game on the other

hand can have hundreds of animations. The amount of detail in the textures, meshes,

lighting, and shading in a large game dwarfs the efforts of even the most ambitious net-

work musician. Important steps can be taken to improve the situation, such as the devel-

opment of open and abstracted tools sets to reduce duplicated work and the adoption of

new skills such as modeling and animation. Perhaps the most useful step is to consider

how some independent developers manage to compete against even the largest games de-

spite tiny budgets and thin development teams. Games such as Minecraft (Mojang, 2013)

attract massive audiences despite these issues because they use resources wisely, often em-

ploying minimalist or generative techniques, and create sophisticated and stylized game

and art designs that don’t require large resources.

Chapter 5. An Interactive 3D Networked Music Space 86

5.8 Reflections on Development
After months of work, and many challenges along the way, Shoggoth has reached an

initial release and is performance ready. The program is fairly stable and a recent feature

lock down means that future development will be concerned with bug fixing and system

efficiency. Other network musicians or software designers will benefit from learning about

a few of the challenges throughout Shoggoth’s development.

An important consideration is when to write a completely new engine from scratch

or in contrast, recognizing when an existing engine is a viable option. Writing a new

engine should not be considered lightly, and indeed the vast majority of the time spent

developing Shoggoth was put into building basic functionality such as FPS style camera

controls, mesh generation, and a chat system. The Quake III engine mentioned earlier, or

something similar such as the Unreal Engine (Finch, 2014), will already have this kind of

functionality built in, and will greatly reduce your development time. Only if something

requires a unique feature (in the case of Shoggoth, the polymorphic terrains) should en-

gine development be considered. Furthermore, if the decision is made to write an engine,

the creation of an abstracted framework or library will benefit subsequent development.

Shoggoth is written without such abstractions and for this reason much of the code base

is not easily portable to other projects. For that reason, this development cycle inspired

the creation of an engine with many of the basic functions underneath a network music

program like Shoggoth implemented using a clean and abstracted interface.

Another large problem facing development was a lack of focus during some periods

of design. Experimentation is a useful technique in music software design, but some

amount of planning will minimize lost time. For example, in Shoggoth the fundamental

way in which performers used the interface was not clearly defined until well into the

development process, resulting in several abandoned efforts and wasted time. From a

musical perspective, a lack of focus is also problematic because it creates a moving target

for sound design, stunting the growth of the system’s musical identity. Finally, allowing

other musicians an opportunity to use and evaluate the project starting early in the process

will help identifying problems not just with the code base, but also the design and vision

of the project. For Shoggoth, that external assessment was not introduced early enough

in the process, leading to some of the issues mentioned earlier. Moving forward the main

concern is to perform with the interface, find and fix problems in the system, and to

streamline the project where possible.

5.9 Experienced User Evaluation
No formal group evaluation was conducted for Shoggoth. Instead a survey was sent to the

two users with the most experience with Shoggoth, Curtis McKinney and Cole Ingraham.

While these responses are purely anecdotal, their feedback provides some insight into how

successful the execution of the design was, from the perspective of having played several

performances using Shoggoth with the author as the band Glitch Lich (McKinney et al.,

2012). The full survey can be found in the appendix on page XXVII. The survey begins

Chapter 5. An Interactive 3D Networked Music Space 87

with five statements in a seven point Likert scale. The statements and responses are as

follows:

• Shoggoth is useful for music collaboration: (7, 7)

• I quickly became skillful with Shoggoth: (6, 5)

• It was difficult to communicate and collaborate: (2, 2)

• The 3D graphics interface implementation was useful: (6, 3)

• I will use Shoggoth in a future performance: (2, 3)

Given that both Ingraham and McKinney have performed with Shoggoth multiple

times, the first four responses, which show support for the system, are unsurprising. Yet,

on the last point both users disagree with the statement “I will use Shoggoth in a future

performance.” To understand this sentiment will require addressing the answers they pro-

vided to the last five open ended questions. These questions will be addressed in turn.

First is the question “How did the 3D graphics interface effect your ability to develop

musical ideas?” Curtis McKinney responded with

The graphics give a kind of awareness for the music that is often lacking while
playing electronic music. While sometimes interfaces can be a distraction to mu-
sic, the interface in Shoggoth actually ended up accentuating it, due to the fact
that it often produced novel patterns. This led to an interplay whereby I felt com-
pelled to alter the music, or the visuals, in reaction to each other. This manner of
performing was unique and enjoyable. – Curtis McKinney

One emergent aspect of Shoggoth was that the performers would take actions in the

piece not just for musical effect, but also for visual effect. This might include flying around

the space to find interesting camera angles or changing the shape of the terrain to find an

aesthetically pleasing contour. Performances engaged the user in a multi–modal context

that the band’s previous systems had not. Ingraham responded with

The interface itself was not a huge factor in the musicality of my experience with
Shoggoth. The mode of interaction of a 3D FPS was intuitive for me (as someone
with a gaming background) but did not influence my musical decisions. If any-
thing, it forced me to make more random, rather than informed, decisions because
of the inherent imprecision of the interface. This was of course compounded by
the fact that the build I was using was heavily glitched and often times unusable.
– Cole Ingraham

One unfortunate side effect of building something as complex as Shoggoth for perfor-

mances was that development became much more difficult, and subsequently there were

several bugs in the software at various points, even during performances. Ingraham used

a different platform (Apple OSX) than the other members (Linux), and platform specific

issues could render builds unstable or even unusable. One example is the February 24th,

2013 Glitch Lich performance at the Network Music Festival in Birminghan, UK (Knotts &

Hutchins, 2013). This was the premier of Shoggoth, but only the first piece, Simulacra,

Chapter 5. An Interactive 3D Networked Music Space 88

was checked with the projector at sound check. During the performance it was discovered

that the first person camera controls did not work correctly with a projector using a differ-

ence resolution connected to Shoggoth, which restricted the movement of the performer

in virtual space.

Next the two performers were asked “How did the 3D graphics interface effect your

ability to communicate and collaborate?” McKinney answered

The interface provided the familiar (for video game users) interface of the com-
mand + t chat prompt, which made organizing the performance simple. Having
a running chat log with fellow musicians made it easy to quickly guide how the
performance played out in a direct way. Furthermore, the avatars for the players
gave immediate and intuitive feedback for what activities each perform was up to.
This often led to plays automatically assuming roles, or sometimes congregating
around interesting activities happening in the piece. – Curtis McKinney

McKinney references notions of locality and embodiment in the virtual space. The

design of Shoggoth has four separate islands to allow for users to work independently or

more directly together. Using an avatar in 3D space allowed performers to quickly assess

intentions and activities. Ingraham echoes his first sentiment

For the specific build I was forced to use, the interface encumbered my interaction
with the other performers. While I could communicate easily via the chat system,
I was unable to see where the others were in the 3D environment. The result was
a greater delay in my ability to react to the decisions of others. – Cole Ingraham

One of the issues with the Apple build was that the avatars did not work correctly,

which dampened the intended effect of the 3D implementation. These criticisms regarding

the technical stability of Shoggoth were echoed by both McKinney and Ingraham in their

response to the question “Can you describe the most negative aspects of your experience

with Shoggoth?”

Shoggoth uses a sequencer-like system to control the beats made in the music. The
system is easy to use and creates rich beats, but there were times I wished there
were other direct ways to control sounds sources. Also, Shoggoth has issues being
a consistent platform for performance due to both difficulties in maintaining the
code and consistent bugs during performances. – Curtis McKinney

Although this was obviously not a design issue, the instability of the build, and
difficulty of compilation for that matter, make performing with Shoggoth par-
ticularly frustrating. Also for the interface critiques stated above, it feels rather
difficult to develop a sense of mastery of the piece, at least in my experience with
it. – Cole Ingraham

Beyond the technical issues both Ingraham and McKinney note that there are some

limitations to the input mechanisms afforded to the users for making musical decisions.

For example, Shoggoth lacks continuous parameter modulation from user input, a feature

most of the previous systems that Glitch Lich had used previously boasted. Still both

Ingraham and McKinney praised Shoggoth for the sonic capacity of the system, when

asked “Can you describe the most positive aspects of your experience with Shoggoth?”

Chapter 5. An Interactive 3D Networked Music Space 89

Shoggoth makes feedback noise music an approachable sandbox. Modulating
terrains and sounds in conjunction turns out to be rather tantalizing. Seeing
manifestations of other plays during performance gives a sense of collaboration,
even when performers are physically absent. – Curtis McKinney

Beyond the aforementioned issues, it is very fun and compelling to see and hear.
An audience member would likely greatly appreciate the interesting geometry and
rich noise/feedback textures. As a performer it is also a fun and novel sandbox to
play with. – Cole Ingraham

Shoggoth has had several performances internationally, including performances in

England, Mexico, South Korea, and the United States. The performances where Shoggoth

was used all received positive feedback, despite the technical issues. Still, the problems

arising from developing a 3D networked interface in C++ has prompted a reassessment

of technical strategies, and the members of Glitch Lich have adjusted their priorities to

include stable builds and build environments.

5.10 Summary
This chapter presented Shoggoth, a new interactive system for performing networked

generative music within a 3D space. Discussion began with the unique problems that net-

work music performances face, especially with regards to distributed ensembles. Next, the

technical implementation of graphics, audio and networking was discussed and Shoggoth

examined with respect to three established taxonomies, and associated contextual con-

siderations. Finally Shoggoth was evaluated by network musicians who drew upon their

experience rehearsing and performing with the interface.

Chapter 6

Quick Live Coding Collaboration
in the Browser

Chapter 6. Quick Live Coding Collaboration in the Browser 91

6.1 Lich.js
The previous two chapters covered Yig, the Father of Serpents and Shoggoth, which are

two graphics focused interfaces. While these interfaces provide graphical representation

of action and state, they also greatly restrict the number and types of decisions that are

made during performances. The decision was made to make a new live coding language to

explore what possible advantages that type of interface might have in a networked context.

A live coding language can maintain some of the focus on displaying effort while also

greatly increasing the “search space” of potential activity. After some initial experiments

with more a Lisp like language, Haskell was instead chosen as the main inspiration for the

language. The resulting language is named Lich.js, as a combination of the band name

Glitch Lich and the suffix “.js”, which is often used for javascript based projects.

Lich.js was created to achieve several goals including quick collaboration, graphics and

audio live coding, a terse and expressive language, and a set of powerful but safe language

features. Collaboration is the main priority and it is for this reason that the language is

web based. The goal of Lich.js is to make collaboration fast and painless for everyone,

from the most experienced network musicians to the casual interested party. Having the

language running on the web allows for members to join a group and start making art

without installing a single piece of software. The end goal is for a group of people to sit

down at any computer and start making music together, as if the computer were like any

other instrument, lacking the requirement of some special software pre-installed on the

device. A video of a live coded Lich.js performance by Glich Lich at Ochiai Soup in Tokyo,

Japan can be found at https://www.youtube.com/watch?v=SIW1TsrGWz0.

6.2 Design Philosophy
The core design philosophy for Lich.js is to have a language that facilitates quick live

coding collaboration. While Lich.js was designed for Glitch Lich performances, it is also

targeted at a wider audience than intended for Yig or Shoggoth. This required a balance

between the previously mentioned Glitch Lich design requirements and the requirements

of an instrument or system intended for broad use. To recap, the four outlined Glitch

Lich design requirements are distribution, communication, virtual space, and autonomy.

As with Yig and Shoggoth, Lich.js uses full local rendering to facilitate distributed perfor-

mances. Lich.js also has chat support built directly into the web based IDE. Because Lich.js

is designed for live performance this chat is scaled to a large font size, to be easily read

when projected to an audience.

Even though Lich.js is a text based live coding environment, there are two characteris-

tics of a virtual space in the design. The first is simply that the web based IDE has support

for multiple code views displaying the active editing area for each performer. This also

allows the players to see what the other members are doing in real–time, allowing for

simple code sharing. Second, and more abstract, is the semantic space of Lich.js. These

live coding performances use a shared global space for the performers. This means that

variables, synth definitions, and patterns defined by one player are available to all the

Chapter 6. Quick Live Coding Collaboration in the Browser 92

other players to reference directly in their own code.

The final Glitch Lich design requirement is autonomy. In principle Lich.js is a turing

complete language supporting all the standard features of a basic functional language.

To fully utilize this language with more sophisticated and autonomous behavior would

require a more developed set of libraries which the language currently lacks. There is

support for some procedural techniques, but their range of expression is not that wide.

Lich.js also supports feedback of various kinds, which is where most of the autonomy can

be found. To date, feedback usage in Lich.js performances has been much simpler than

the feedback networks in Yig.

Figure 6.1: Glitch Lich performance using Lich.js at an Algorave in Tokyo.

The Glitch Lich requirements need to be considered alongside the requirements of a

live coding language targeted for larger public release. The core design principle was to

allow for quick live coding collaboration. This basic principle informs other design deci-

sions such as the necessity for easy synth and pattern definitions. Simplicity and terseness

are both features of Lich.js that are meant to make collaborations faster to start and easier

to edit and share code. Lich.js has many features, but the core features of rhythmic and

melodic patterns, synth definitions, and live evaluation have all been streamlined, taking

influence from other live coding languages, especially Tidal (McLean, 2011) and ixi lang

(Magnusson, 2011). Sample based sound generation is equally as important as synthesis.

While Lich.js syntax can be more verbose than both Tidal and ixi lang, Lich.js has more

support for synthesis based sound editing. In general this has led to a design philosophy

Chapter 6. Quick Live Coding Collaboration in the Browser 93

where efficiency and terseness are core principles, but also allowing some verbosity and

complexity for features such as synthesis and visuals programming.

6.3 Language Design and Implementation
The consequence of choosing a web based design is that JavaScript now becomes the

target language. The decision was made early on that the syntax provided by JavaScript

is too verbose to allow for easy live coding. By creating a domain specific language,

unique syntaxes can be created to make expressions terse and clear with respect to music

and graphics. Lich.js is a pure functional language with syntax similar to Haskell, but

unlike Haskell it is dynamically typed and compiles to JavaScript. Haskell-like syntax was

chosen because it provides both an existing language as an established reference point

and because the syntax is terse and declarative. It also provides some other useful syntax

elements such as pattern matching, which allows function arguments and case statements

to easily select and decompose objects by type. Lich.js also implements partial application,

which is similar to currying in Haskell, and allows for functions to be passed a number

of arguments less than the expected total. The return value is now a new function with

that many fewer arguments, and with the curried arguments predefined in a new closure.

Lich.js also widely uses a streaming operator >> for data flow, which takes inspiration from

the |> forward pipe operator in F#. This operator fits well in a music language because

it composes chains of computation that are expressed similarly to a signal path through a

series of effects pedals or synth modules. For example “saw 440 >> lowpass 900 1 >> gain

0.1” expresses a saw oscillator feeding into a low pass filter and finally being lowered in

volume.

-- Function definition

let myFunc x y = x + y * z

where z = y / (sqrt x)

myFunc 1 2 -- Function application

[1 ,3..100] -- List range syntax

-- Pattern matching lists

let vecSum [x,y,z] = x + y + z

-- Mapping and filtering lists

map (*2) [1..99]

filter (/= Nothing) [1,Nothing ,3]

Figure 6.2: Some example Lich.js code that demonstrates a similarity to Haskell.

Lich.js’s lexer and parser are written in Jison (Carter, 2014), which compiles input

strings of Lich.js into an abstract syntax tree. This syntax tree is then recursively traversed

generating substrings of code which are concatenated together to produce the final target

JavaScript code string. This JavaScript string is evaluated against a pre-built runtime

that facilitates audio and graphics sequencing, and networking capabilities. The entire

Chapter 6. Quick Live Coding Collaboration in the Browser 94

framework is hosted on a server and users simply visit a website to immediately begin

collaborating. Immediacy is an important goal for the Lich.js design because it makes

iteration and code dissemination incredibly simple for the ensemble. Juggling code bases

can be difficult even for experienced ensembles, especially those using mixed operating

systems. Lich.js is supported on Windows, Mac OSX, Linux, and can even be run on mobile

devices such as tablets and phones.

A functional paradigm was chosen because it allows for highly modular and terse

programs, two features that are useful when writing and using code in a real-time perfor-

mance. Like Haskell, Lich.js enforces immutability of objects. This means that variables

can not be rebound or mutated, including containers such as lists and dictionaries. By

disallowing object mutation it becomes easier to reason about the behavior of a program,

allowing for chains of pure functions to build up complex, but more predictable programs

than imperative designs. This becomes especially important in networked coding contexts

where collisions between code bases can easily cause unforeseen consequences.

Being a live coding language, it would be rather useless if there wasn’t some way to

allow for side effects in the system and Lich.js provides a few well defined ways to allow for

these effects. The easiest is to use the interactive mode, which is the default mode when

visiting a Lich.js website. In interactive mode, commands can be executed and global

scope variables can be rebound by hand using a “let myVar = myValue” syntax similar to

GHCI for Haskell. Functions or any other language construct still have no ability to change

objects and so any mutation is directly requested by the user and only at global scope. For

live coding this is very useful because changes to synth definitions and patterns are defined

in the global scope. The user can now rely on the vast majority of their programs being

created with pure functions. The other mode for writing code is the library mode which

is similar to a basic Haskell file. In library mode, global variables don’t require use of

the “let” syntax but can only be defined once and never changed as well as anything else.

Predefined user code can be compiled ahead of time with useful functions such as chord

progressions, section changes, useful data structures, and so on, with the guarantees of

immutability. In interactive mode, library files can be imported and called like any other

system code.

For more complicated uses of state, Lich implements the State Monad as found in

Haskell. The State Monad is a kind of wrapper that allows for state mutation to be em-

ulated using a chain of pure computations. Regarding the type system, Lich.js is not a

strict clone of Haskell, and eschews a strong type system . For this reason some semantics

are more similar to Erlang or Scheme because of the ability to utilize mixed lists or other

structures. This does introduce many more opportunities for confusion and unpredictabil-

ity, offsetting some of the efforts of the pure functional design. Dynamic typing was chosen

simply because it gives the user less to worry about while coding in the moment, which

is useful for live coding, as evidenced by many of the other live coding languages using

a similar type system. Additionally, enforcing type semantics would add another layer of

computation during compilation which could be potentially introduce more audio glitches

during performance.

Chapter 6. Quick Live Coding Collaboration in the Browser 95

6.4 Synths and Patterns
Web Audio is a relatively new API implemented in most major browsers including Firefox,

Chrome, Safari, and Edge. The API provides a relatively low-level interface for creating

real-time synthesis in pure JavaScript. The metaphor of a mixing console with effects

channels is present throughout, lending itself well to use in web applications and games.

Unfortunately the API is unwieldy for live coding because it is verbose and lacks many

higher level features that you can find in other audio programming languages. For these

reasons Lich.js compiles user created synth definitions into pure JavaScript code, gener-

ating the necessary node connections and managing unit generator life times. Currently

the Web Audio API defines several oscillators (sine, triangle, saw, and square wave), filters

(lowpass, highpass, bandpass, notch, and several shelf variants), a waveshaper, a limiter,

buffer playback, convolution, mixing nodes, and FFT analysis. This is a good basis for

any audio application, but pales in comparison to many other audio engines and as such

requires augmentation. Lich.js currently supports all of the supplied audio types except

for FFT analysis. Furthermore it includes a wide array of custom unit generators includ-

ing noise generators, filters, distortion effects, reverb, bit crushing, decimation, buffer

manipulation, envelopes, and a frequency shifter.

let s = osc >> filt >> dly >> gain 0.3 >> play

where

osc = (saw 80) * (square 3)

lfo = sin 0.1 >> exprange 20 2000

filt = lowpass lfo 10

dly = delay (1/3) 0.9

Figure 6.3: Audio generation using the play method.

Lich.js also implements a robust synth definition syntax that allows for language con-

structs, such as pattern matching or conditional branching, to be used directly. This is pos-

sible because these synth definitions compile down to a graph of audio node connections

in JavaScript and reference values in the same language. This contrasts with a language

such as SuperCollider where synth definitions are walled off from many language seman-

tics because the target language for audio processing is different. It should be noted that

higher level language semantics in Lich.js such as conditionals won’t run at audio rate in a

synth definition, but instead will define the particular connections that are created inside

the node graph upon compilation. One notable feature of the synth definition is the heavy

use of the >> operator. This operator simply takes the left operand and applies it to the

right operand. The syntax is simple but would not be easily implemented in other lan-

guages that don’t utilize partial application. For this reason Lich.js synth definitions have

a signal path like flow that declaratively describe transformations.

By using the play function, running synths can be generated from synth definitions,

but using the generative pattern sequencers in Lich.js allows for more powerful control.

Chapter 6. Quick Live Coding Collaboration in the Browser 96

-- Synth definition with an argument named f

let m f => sin f >> delay 1 0.1 >> perc 1 0.1 1

-- Solo patterns sequence over argument values

lead ∼> m 440 [660 990] 330 _ 220 _ 110 55

-- Synth definitions use the => operator

let b => tri 80 >> lowpass 320 1 >> perc 0 1 0.3

let s => white 1 >> bandpass 900 3 >> perc 0 1 0.2

-- Impulse patterns use a layout based syntax

drums +> b s [b b] s

Figure 6.4: Some expressions for synth and pattern generation.

Synth definitions that are used with patterns are defined using the => operator. Currently

there are two different syntaxes for generating patterns in Lich.js. The first is impulse

based patterns, such as a drum sequence, and is invoked using the +> operator. Impulse

patterns define nested rhythms using variables and lists without the need for commas and

with rests marked by the Haskell wildcard _ symbol. Rhythm duration modifiers can be

added to the pattern to generate more complex expressions with a small amount of code.

The other kind of pattern generator is the solo pattern invoked using the ∼> operator.

Unlike impulse patterns, solo patterns only take a single synth variable and afterwards

are supplied a sequence of values to call that synth with. This is useful for sequencing

bass lines, melodies, or any function that requires an argument. Like impulse patterns,

modifiers can be added to the sequencer, but here they modify the values passed to synth

instead of durations.

6.4.1 Scheduling

The scheduler in Lich.js has been greatly improved upon since the original implementa-

tion. JavaScript timers can have a variation of tens to hundreds of milliseconds which is

not reliable enough for an audio sequencer, and for this reason the original scheduling in

Lich.js was uneven and inconsistent. In a massive revision the scheduler was rewritten

to use a technique found in several other web audio applications (Wilson, 2013). The

most important part of the technique is to recognize that Web Audio implementations are

run in a different thread from the main user view and the Web Audio scheduler is highly

accurate. The problem is finding how to leverage the accuracy of the Web Audio timer

without having the standard JavaScript timers mar the fidelity. The solution is to write

an event scheduler with a look ahead time. Because Web Audio Objects have an explicit

start and stop time, if you can schedule events far enough ahead of time (100ms or so

should suffice) then even if your scheduler has variance, the actual web audio event will

still occur accurately. Furthermore the scheduler is more robust and can withstand higher

variance in CPU activity from other parts of the program.

Chapter 6. Quick Live Coding Collaboration in the Browser 97

Figure 6.5: Generative visuals created with Lich.js

6.5 Graphics
Most of the graphics functionality in Lich.js is built upon the THREE.js (Cabello, 2010)

library which is a WebGL based JavaScript library for 3D graphics. Although WebGL has

been supported longer than Web Audio, the API is very low level, requiring tremendous ef-

fort to make something usable, let alone live coding. Pragmatism was the deciding factor

for using THREE.js. Writing a new language, audio system, and client/server architecture

were all tremendous tasks, but necessary to materialize the unique features required in

Lich.js. WebGL on the other hand is older than Web Audio and THREE.js has well estab-

lished itself as a stable library that implements most features that would be needed in

a graphics based application. While THREE.js abstracts away most of the difficulties of

OpenGL, it still requires more code than is feasible to write in real–time. For this reason

most of the graphics work in Lich.js has been to take the implementation of THREE.js

and build on top of it a collection of higher level functions and algorithms for live coding

visuals.

Lich has several functions for 3D mesh generation from basic shapes such as spheres

and boxes to complex generative algorithms. The functions take position and color data

in addition to any other values they require, creating the mesh and directly drawing it in

the scene. All meshes can have their position, rotation, angular and linear momentum,

color, and scale manipulated in real-time. Furthermore, because the pattern sequencers

described in the previous section support more than just audio functions, you can compose

a definition that manipulates a mesh instead of audio. Beyond mesh manipulation, Lich.js

has some preliminary code for shader generation using a mini-language called Splice.

Splice is a very basic language that takes a string and translates every character into a

GLSL function, then wraps up the result with some boiler plate code to create a new GLSL

shader. The result is often glitchy with some surprising behavior. Passing native GLSL code

Chapter 6. Quick Live Coding Collaboration in the Browser 98

directly is supported, but writing pure GLSL in real-time is cumbersome. At the moment

there is no 2D Graphics API or support for textures. These are among several features that

will be added in upcoming versions of the language.

let c = map (random 0) [255 ,255 ,255]

let s = sawMapMesh 20 20 c

s >> scale [7,7,7] >> angular [0.01 ,0.01 ,0.03]

spliceShader . randomString $ random 1 5

Figure 6.6: Lich.js code used to generate the scene in Figure 6.5

6.6 Networking
Networking was the greatest motivating factor for creating Lich.js with a web based im-

plementation. The networking features currently supported are simple, but the focus has

been to make the project stable and usable first, before adding more features. Networking

in Lich.js uses a simple client and server architecture with the server written in Node.js

(Joyent, Inc., 2012). There are three main networking features in the language: the

networked IDE, chat based communication, and shared code execution. The Lich.js IDE

is based on the ACE HTML5 code editor which supports syntax highlighting, matching

bracket highlighting, and customizable keyboard bindings. The work on the IDE so far

has served to create a completely automated user management experience. When a user

visits a Lich.js site they are greeted with a request for a user name. The server receives

the name and stores a cookie on the client computer so they don’t have to reenter this

information in the future. There is currently no password system so this is the extent of

logging on. Once into the main Lich.js page they are presented with a code editor and a

post view on the bottom. If another user joins the same site the code editing view is au-

tomatically split in half using a smooth transition animation, and now both users can see

other’s code. Originally the code editor was a single document, but this caused significant

issues with unexpected code deletions and collisions. The current method affords many

of the same features of the shared editor, namely the visibility of the code and efforts of

the other users, but the networked code editors are read-only for everyone but the owner.

A notable drawback of this approach is that it limits the number of collaborators to only

about three or four before the editor sizes become too small to use reasonably.

A chat feature was added to the system because even though the post window could

be used as a chat using print functions, it was easy to lose messages to system print out

and was too small for an audience to read. The new chat feature prints chat messages very

large and right justified over the entire window. The messages fade in and out and only

last a few seconds. They are legible and invite attention without being too distracting.

Finally, code is executed across the network. Whenever any user executes a function

that function is sent across the network and executed for each client. While currently

not implemented, it would be useful to have a more sophisticated implementation that

Chapter 6. Quick Live Coding Collaboration in the Browser 99

uses time stamps with pre-calculated latency to execute changes synchronously across the

system. Another concern is that while it is very simple to start using Lich, if an interested

user wanted to create their own server, the procedure is more complicated. It requires the

installation of Node.js and using some command line tools. A more elegant method needs

to be developed to make independent servers easier to create for newer users.

6.7 Categorization
Categorizing Lich.js using the taxonomies mentioned in previous chapters will demon-

strate some of the relationships between it and previous works. Given that Lich.js is a live

coding language using a textual environment, a superficial consideration may treat it as

very different from the heavily graphics oriented systems described in other chapters. In

some regards this is true, however there are many meaningful similarities that are useful

to consider as well.

Using Barbosa’s Network Music classifications (Barbosa, 2003) immediately presents

some interesting decisions regarding classification. Lich.js is hosted on an open public

server, and receives multiple visits everyday from locations across the globe. These visits

are isolated events, punctuated by occasional moments of overlap. It may be possible

to consider these surreptitious meetings to be part of an asynchronous collaboration, and

thus a case could be stated that Lich.js at least in part can be classified as an ‘Asynchronous’

system, per Barbosa’s Taxonomy. This is not the case though, as all of the interactions

in Lich.js are synchronized between users on server login and logout. User departures

from the server leave no lasting effect for unknown future visitors to encounter. Lich.js

can firmly be categorized as a ‘Synchronous’ network music system, but the ‘Local’ and

‘Remote’ axis is more open with Lich.js. Remote collaboration was one of the fundamental

principles guiding the design and architecture of Lich.js. The language fully supports trans-

continental efforts as evidenced by the multiple performances by Glitch Lich with members

in North America, Europe, and Asia. While global collaborations are supported, local ones

are not excluded. The barrier to entry may be slightly higher as this may require running

an instance of the Lich.js server on a local host, but local collaboration is a completely

functional capability of Lich.js. As such Lich.js can be categorized as a ‘Synchronous’

interaction system supporting ‘Local’ and ‘Remote’ locations per the taxonomy laid out by

Barbosa. Barbosa’s denotes this particular combination as a “Shared Sonic Environment.”

Next is to consider Anrew Hugill’s five internet music types. Hugill’s categories are not

plotted along dimensions and partly because of this their relationships to each other are

less clearly defined. Instead they are presented as unique monolithic categories that allow

little overlap. Considering each in turn, Lich.js cannot be claimed to create “Music that

Uses the Network to Connect Physical Spaces or Instruments.” The system still does not

have live input support and doesn’t even support MIDI input, so this can be safely ruled

out. The type “Music that is Created or Performed in Virtual Environments, or Uses Vir-

tual Instruments” is worth considering, but the particular interpretation of environments

and instruments by Hugill suggests that this category is meant for music or systems that

Chapter 6. Quick Live Coding Collaboration in the Browser 100

more closely attempt to emulate live or acoustic performance. Lich.js on the other hand

is quite distant to this kind of work, and in fact seeks to create music more unique to

the computer, given the live coding approach. The third type “Music that Translates into

Sound Aspects of the Network Itself” does not even begin to hold true for Lich.js. While

networking infrastructure is a fundamentally important to the behavior of the system, the

end result is simply to as closely synchronize environments between players, and the net-

work only imprints itself by the usual whims of packet transmission, packet loss, and the

occasional disconnect. The strongest contender is “Music that Uses the Internet to Enable

Collaborative Composition or Performance”, which encapsulates both the performance

and compositional capacity of Lich.js, as well as the basis in internet technologies. Lastly,

“Music that is Delivered via the Internet, with Varying Degrees of User Interactivity” holds

some validity, but the focus on delivery and end user interactivity makes this category

more appropriate for traditional music sites such as Duckworth’s Cathedral (Duckworth,

2001) than for the performer and composer focused functionality found in Lich.js. The

three dimensions plot “Net Music” across the axes of ‘Interactivity/Openness’, ‘Interplay

with network characteristics’, and ‘Complexity/Flexibility.’

Weinberg’s network configurations and topologies are incredibly varied, but as men-

tioned in earlier chapters, the vast majority of these configurations are rare. This pattern

holds true with the evaluation of Lich.js which can be considered to be an example of the

“Flower” topology. The “Flower” topology includes network configurations that are syn-

chronous and centralized. In Lich.js every message travels first through the main server

before being dispersed to the rest of the peers in the network, thusly it can be consid-

ered to be centralized. Lich.js is also synchronous because messages are sent and handled

immediately with no structures built into the system for pan-session memory, storage, or

permanency. This is in contrast to historical network music systems and pieces, including

the works of the League Of Automatic Music Composers and the Republic, which can use

more complicated or elaborate network configurations, often because these connections

directly impact musical behavior. Interactions in Lich.js are synchronized and virtualized,

and while these relationships can exists, often they are abstracted as variable references

or function calls. The language design itself seeks to emphasize stateless and denotational

formulations as opposed to state machine emulations.

My assessment of Weinberg’s comparisons between so called “Novice IMN Systems”

and “Expert IMN Systems” concluded that the infrastructure is too encumbered by the

formulation of strict dichotomies. While Weinberg’s categories have issues it is still useful

to consider the question of just who is Lich.js for? A programming language for music may

not be the first format that comes to mind when considering exoteric music collaboration.

Still, Lich.js stands as the author’s most concerted effort to make a general, open, and

intuitive system for collaborative electronic music. Programming languages (especially

higher level programming languages) are at their root an effort to express human ideas

and mental abstractions. By using specialized syntax Lich.js attempts to simplify some of

the difficulty in expressing musical structures as higher level abstractions.

Föllmer’s Spatial Order of the Twelve Types of Net Music is a dense collection of vari-

Chapter 6. Quick Live Coding Collaboration in the Browser 101

ous categories mapped across three dimensions. As opposed to Anrew Hugill’s five internet

music types there is a strong set of relationships established across the dimensions and be-

cause of this the various categories are more likely to overlap or contain both similarities

and differences. Considering ‘Interactivity/Openness’ immediately presents an issue of

category. Lich.js is a programming language and highly modular. For the performers and

composers using Lich.js, the system is quite open and highly interactive. The utilization

of Lich.js in a performance on the other hand is usually lacking any kind of audience or

public interactivity. Still, the open server implementation acts as a public forum for day

to day experimentation often with anonymous users. Föllmer’s clusters themselves vary

somewhat in the intended vantage point from which to consider the axes. Lich.js should

be included near both the Algorithm and Installation cluster as well as the Instrument and

Workshop cluster, which would situate it at a 3 or 4 along the ‘Interactivity/Openness’ axis

(scale 1 through 5). The ‘Interplay with network characteristics’ axis is more clearly de-

marcated. As mentioned earlier, network characteristics have a limited impact on Lich.js

collaborations however it is important to distinguish that live interactions are being net-

worked, which is why it was as a 3 in this axis. Finally, the ‘Complexity/Flexibility’, which

Föllmer uses to rate of Flash and Shockwave toys as being a rating of 1. Given the relation-

ship between Flash and Web Audio as internet technologies, it may be tempting to group

Lich.js closer to the Flash/Shockwave Soundtoys type, but the Turing complete language

implementation differentiates Lich.js as having an incredibly deep capacity for complexity

and flexibility. Still, the core language eschews some of the complexity and flexibility to

focus on intuitive musical expressions, so I’ve considered Lich.js a 4 of 5 on the ‘Complex-

ity/Flexibility’ axis. This particular configuration of an interactive and open system, with

moderate interplay with network characteristic, but high amounts of complexity and flexi-

bility plots Lich.js in a region of Föllmer’s spatial order with no clearly established category

or cluster. This may in fact be an artifact of the change of web technologies as historically

similar systems such as the Flash and Shockwave Soundtoys had limited capabilities, but

now more complex systems from a shared background can now be created, which was

previously unexplored during the formulation of the established clusters.

Plotting Lich.js in Magnusson’s epistemic dimension space reveals a shape that is dif-

ferent than the previous mappings. This in part due to the fact that the previous systems,

including Max/MSP, Yig, and Shoggoth all put a focus on a graphical interface, where as

Lich.js is a live coding language with textual input. Along the ‘expressive constraints’ axis,

Lich.js is plotted moderately. Lich.js is a Turing complete functional language and for this

reason has the capacity to emulate any other Turing complete state machine. While this

is possible, the language is focused on streamlining improvisation and much of the more

complicated functionality is hidden away in advanced features that lack an intuitive and

simple API. As well, the ‘autonomy’ axis is marked at around 40 percent. There are built

in functions to generate procedural sequences, and a library of filters and combinators to

build up more complex and surprising behavior. These functions are all deterministic and

even something as simple as feedback is not allowed within the Lich.js pattern system. The

amount of autonomy is limited to a higher level description of mathematical evaluations

Chapter 6. Quick Live Coding Collaboration in the Browser 102

and the system has no real capacity to make decisions beyond these formulations.

Regarding ‘music theory’, Lich.js has a large scale and tunings collection that can be

used with melodic functions. Lich.js also has support for chord semantics, allowing for

chord based sequences to be defined, and for melodic passages to use relative offsets from

the root, or to specify chord voices for pitch. Lich.js lacks powerful theory based functions

for describing more complex relationships and behaviors beyond that, such as larger scale

structure, counterpoint, or rhythmic relationships. The ‘explorability’ axis is similar to the

‘autonomy‘ axis in that Lich.js has the capacity to produce complex and varied output,

but the design of the language adds frictions to these kinds of explorations in favor of

making fast changes to beat based tonal music easier and more intuitive. The ‘required

knowledge’ axis reveals some of the potential shortcomings of the live coding approach

for general purpose usage. The language was designed with simplicity as a key factor,

however the choice of Haskell has proven to be confusing at times even for programmers,

and additionally a certain amount of familiarity with music theory such as scales, chord

progressions, and rhythmic structures is required to make more sophisticated expressions.

The ‘improvisation’ plotting demonstrates one of the strengths of Lich.js. Changes

made to patterns are updated in real–time along with the changes of collaborators. This

tight iteration loop combined with a plethora of generative functions allows for a contin-

uous dialogue between the performers. For the same reasons the ‘generality’ is marked as

low, because many of the features that make the system more easily used for improvisation

also make Lich.js less useful for anything else, such as composition, or music that doesn’t

focus on beat based tonal music. Finally, Lich.js is plotted high on the ‘creative/simulation’

axis as the system is an abstracted live coding language that eschews any effort to present

the user with traditional instrumental input or even behavior.

6.8 Comparing Lich.js and Javascript Performance
It is useful to look at some metrics for how the code generated by the Lich.js parser per-

forms in comparison to equivalent code written directly in JavaScript by hand. Before the

tes was ran, it was hypothesized that there would be quite a disparity in performance.

This is because the code generator produces code in a continuation passing style (CPS)

and JavaScript is missing key optimizations that make CPS performant (Loitsch, 2007).

The test setup consisted of creating four small examples of code that demonstrated dif-

ferent basic facilities of each language, such as binary operations, and case statements.

The Lich.js code was compiled to JavaScript using the normal lexer/parser and the two

versions of each test were run using jsPerf, an established website dedicated to JavaScript

benchmarking (Bynens, 2010).

The results can be found in figure 6.8 (note: the scale is logarithmic and higher is bet-

ter) and the test code used is listed in Appendix D.7 on page XL. The first test, calculating

9 digits of the Fibonacci sequence, demonstrates the widest difference. The Lich.js ver-

sion only managed 352 operations per second while the direct JavaScript implementation

came in with 1,965,147. This confirms my hypothesis, however the difference is larger

Chapter 6. Quick Live Coding Collaboration in the Browser 103

expressive constraints

autonomy

music theory

explorability

required knowledge

improvisation

generality

creative-simulation

fe
w

m
an

y

litt
le

muc
h

little much
little

much

little
m

uch
ha

rd

ea
sy

littlemuch

simluation

creative

Figure 6.7: Lich.js in the epistemic dimension space.

than originally had postulated. The next test used case statements that values that fell

all the way through to the default case. Case statements saw a 72% gap with 6,595,638

operations per second for Lich.js compared with 23,017,388 for JavaScript. The difference

is large, but not nearly as large as in the Fibonacci sequence test. The third test was a sim-

ple arithmetic operation of “1 + 2 * 3". The binary operator sequence presented another

tremendous disparity with 23,017,388 for Lich.js and 89,004,920 for the directly coded

JavaScript. This result is interesting because the test was so basic. An optimization with

the operators could have far reaching results in the performance of the entire language

and will constitute further investigation. Finally the list test looked at list comprehension

for a list of almost 10,000 items. This test saw a 46% difference between Lich.js and the

hand written JavaScript. This is likely because the list comprehension syntax in Lich.js

relies heavily on pure JavaScript primitives unlike the Fibonacci sequence test.

6.9 Design Summary and Future Work
The previous sections have argued that the continued difficulty of networking has stifled

the creation and productivity of network bands and ensembles; that there is a need for a

simpler approach for users of all experience and skill levels. Lich.js was designed in part to

accomplish this goal, as a new live coding language in the burgeoning field of web based

Chapter 6. Quick Live Coding Collaboration in the Browser 104

Fibonacci Case BinaryOp List

103

104

105

106

107

108

O
pe

ra
ti

on
s

pe
r

se
co

nd
(l

og
ar

it
hm

ic
)

Lich.js (Old CPS)
Lich.js (Current)

JavaScript

Figure 6.8: A comparison of the execution speed of Lich.js in continuation passing style, Lich.js as
it is currently, and the equivalent JavaScript code.

languages. After surveying the current alternatives a justification was made for the need

of yet another language; one based on collaboration from the beginning. Following the

introduction, Lich.js was covered in detail, including the language syntax and semantics,

synth definitions and pattern generation, graphics, and networking. Lich.js is open source

and available on GitHub (McKinney, 2014a) but is still in development. New features

are also being considered such as local area network clock synchronization, time stamped

code execution, Open Sound Control responder implementation, and more graphics and

audio functionality. Now that the design and basic analysis of Lich.js has been performed,

a more formal user survey will be discussed in the next section that addresses in part how

successful Lich.js is at achieving the design goals laid out previously.

6.10 User Evaluation
To evaluate Lich.js an online survey was created using the web based survey authoring

site (SurveyMonkey, 2014). Ethics approval can be found in Appendix D.6 on page XXXIX.

An open call for participants was announced on various social media sites such as Twitter

(Twitter, 2014) and FaceBook (FaceBook, 2015), as well as on several computer music and

art e-mail lists such as the SuperCollider list (McKinney, 2014d), and lurk.org (McKinney,

2014b). Users were directed to a web site (McKinney, 2014c) to use Lich.js and asked to

answer an accompanying questionnaire after using Lich.js. Because Lich.js was developed

using web technologies, a web format for the survey was chosen. This format allowed for

anyone to access it from any computer regardless of operating system, and even supports

mobile devices, although a keyboard is preferred given the requirement for programming.

Compared to the Yig study, friction for participants to be involved was much lower. Par-

ticipants did not have to have specific software installed beyond the Google Chrome web

browser (Google, 2015) and could participate from any location and during any time of

day.

Chapter 6. Quick Live Coding Collaboration in the Browser 105

The goal was to attract a larger pool of participants than the Yig study, but despite the

low friction for participation only seventeen surveys were collected after several months

of being posted. This is only one more than the number of participants in the Yig study,

but there were several other advantages to the format. Participants were able to complete

the survey completely anonymously, and did not have to be local to southern England to

participate, which increases the potential for a wider variety of backgrounds for survey

results. While this potential exists, it is important to note though the participants were

a self selecting group participating in a web survey which directly impacts the potential

audience. Participants are more likely be young and middle-aged adults, with high school

or college degrees, and who hold jobs that pay salaries above the considered poverty line

(Center, 2014). The survey and demo were only available in English, which excludes

many potential visitors. Additionally Lich.js was featured on the Chrome Experiments

(Google, 2014b) site, which increased traffic to the site from beyond the initial postings.

No background information was requested in the survey so specific data points cannot be

referenced, but given the sources of advertisement it is more likely that participants are

familiar with computer music, live coding or recent web technologies such as Web Audio

and WebGL.

6.10.1 Quantitative Analysis

The survey itself contained two sections, one for quantitative evaluation, and the second

for qualitative. Section one included a series of Likert items where users were directed to

“Rate the following statements with a number 1 through 7 according to how strongly you

agree with them. 1 being strongly disagree and 7 being strongly agree.” The statements

for each Likert item are listed in Table 6.1. Likert responses were treated similarly to

the Yig evaluation, using the R open source statistics environment (Crawley, 2012) for

analysis. The Likert items are treated as ordinal data, using median, and IQR on individual

items, forgoing any parametric analysis. First, each question will be addressed in turn, but

it is important to note that too much importance shouldn’t be placed on any individual

Likert item, especially given the small sample size (17) of the data set. A stronger case

about what the data suggests will be made by synthesizing the results of all of the Likert

items as a resulting Likert scale. After addressing the quantitative data, the qualitative

responses will be considered and how they might present potential themes and reasons

for the attitudes that the quantitative results suggest.

Table 6.1: List of Likert item statements regarding Lich.js

Lich.js is useful for music collaboration.

I quickly became skillful with Lich.js.
It was difficult to communicate and collaborate.

The browser based implementation is useful.

I will use Lich.js in a future project.

The listing of Likert responses can be found in figure 6.9, which will be referred to

throughout the rest of this section. First regarding “Lich.js is useful for music collabo-

Chapter 6. Quick Live Coding Collaboration in the Browser 106

ration”, the resulting responses have a median value of 5, suggesting a positive attitude

towards the Lich.js collaborations. The interquartile range (IQR) is 2 representing a gen-

eral consensus with the median, albeit not the strongest consensus. Next regarding “I

quickly became skillful with Lich.js”, the responses have a median value of 4, and an IQR

of 2. This measurement indicates generally neutral attitude, although the responses for

this item held the most normalized distribution around the neutral (4) response. This

indicates that while Lich.js is scored as being useful for collaboration, that that usefulness

does not directly correlate with ease of use. Continuing the neutral attitude is the item “It

was difficult to communicate and collaborate”. The scores have a median value again of 4

and an IQR of 2. Notably this item has the largest percentage (35%) of neutral responses,

which might indicate that instead of having a large collection of neutral opinions, this may

also include a large number of respondents who did not use the collaborative capabilities

of Lich.js.

41%

41%

24%

18%

0%

47%

24%

65%

71%

100%

12%

35%

12%

12%

0%

response

I will use Lich.js in a future project

The browser based implementation is useful

It was difficult to communicate and collaborate

I quickly became skillful with Lich.js

Lich.js is useful for music collaboration

100 50 0 50 100

Percentage

Response 1 2 3 4 5 6 7

Figure 6.9: Lich.js User evaluation numbered responses.

Next, “The browser based implementation is useful” has a median value of 6 and

an IQR of 1. This item has the highest median of the individual items as well as the

greatest consensus on that value. Finally, “I will use Lich.js in a future project.” has a

median value of 5 and an IQR of 2. This has a very similar distribution to the first item,

“Lich.js is useful for music collaboration”, and although some responses of individuals

differently between the two, the result as a whole is still generally positive. The results

indicate that some individuals may consider Lich.js to be useful for collaboration but will

not actually use it, and other don’t think Lich.js is useful for collaboration, but do intend

on using it in a future project. This suggestion holds with the indifferent response to “It

was difficult to communicate and collaborate” and the highly positive response for “The

browser based implementation is useful.” Given these responses, the data indicates that

Lich.js is considered to generally be a useful tool for collaboration, but that there is more

excitement about a browser based music system than a collaborative music system.

Chapter 6. Quick Live Coding Collaboration in the Browser 107

Table 6.2: Sum and mean of Likert item responses for each participant

Sum of Likert item responses for each

participant

26, 26, 26, 16, 27, 16, 22, 31, 16, 31,

27, 29, 23, 22, 26, 26, 27

Mean of Likert item responses for each

participant

5.2, 5.2, 5.2, 3.2, 5.4, 3.2, 4.4, 6.2, 3.2,

6.2, 5.4, 5.8, 4.6, 4.4, 5.2, 5.2, 5.4

The sum for individual responses to each Likert item can be found in the first row of

table 6.2, and the mean of these individual responses to all five items can be found in the

second row of table 6.2. Note that this mean is applied to each individual respondent’s

results across all five Likert items, and not a median of the responses to a particular item.

For this reason the data is evaluated as a scale of positive or negative attitudes to the

Lich.js demo experience, and not as just ordinal data. The median value of the collection

of means of attitudes is 5.2, with an IQR of 1. The mean value of individual means is

4.906, with a standard deviation of 0.957. These results indicate a generally positive, but

not overly positive, attitude towards Lich.js and this result sees a high consensus. This

consensus shows that indeed the synthesis of the individual items is a stronger indicator

of actual attitudes than each individual response.

6.10.2 Qualitative Analysis

Now to better understand reasons behind the results from the quantitative analysis next

there will be a thematic analysis of the responses to the second section of the survey. The

participants were asked to answer five questions regarding their experience with Lich.js

including “How did the language effect your ability to develop musical ideas?”, “If you

used the graphics functionality, how did the language effect your ability to develop visual

ideas?”, “Can you describe the most negative aspects of your experience?”, “Can you de-

scribe the most positive aspects of your experience?”, and “Are there any further comments

you wish to make?” The answers to these questions were analyzed using thematic analysis

using the methodology as defined by Braun and Clarke (Braun & Clarke, 2006).

According to Braun and Clarke, thematic analysis requires the researcher to make sev-

eral decisions about the particular approach to the analysis first, and these decisions will

impact the way that themes are developed and how closely tied to the specific data set the

resulting analysis holds. The four decisions as outlined are “A rich description of the data

set, or a detailed account of one particular aspect”, “Inductive versus theoretical thematic

analysis”, “Semantic or latent themes”, and “Epistemology: essentialist/realist versus con-

structionist thematic analysis.” First, for “A rich description of the data set, or a detailed

account of one particular aspect”, a rich description was chosen as the goal was to find

emergent themes from the data set, instead of introspecting about any specific theme.

Next, with “Inductive versus theoretical thematic analysis” inductive analysis was chosen

so that identified themes would be developed from the ground up and be tightly coupled

to the data. Semantic themes were chosen over latent themes as the research is not neces-

sarily concerned with finding larger cultural or ideological reasonings that form the basis

for themes. Instead the goal is to specifically analyze the responses directly in relation to

Chapter 6. Quick Live Coding Collaboration in the Browser 108

the evaluation of Lich.js. Finally, realist analysis was chosen over constructionist analysis

because the responses are self selecting and anonymous for a topic with that isn’t espe-

cially sensitive. For the purposes of the analysis it is more useful to assume a simple and

largely unidirectional relationship between meaning and experience and language.

After making the required decisions regarding the particular approach to the thematic

analysis, the next step is to familiarize yourself with the data set and after which to gen-

erate a series of codes in the data. These codes are like small atoms of meaning in the

responses of the participants. These codes should provide a hook for identifying impor-

tant thoughts, notions, and feelings while maintaining only a small amount of surrounding

context. The resulting codes chosen for this analysis can be found in Appendix D.3 on page

XXXV. The resulting collection is a list of 126 codes that range from a single word such

as ‘Fun’ to nearly whole sentences such as ‘Difficult to understand who produces which

sound’, and covers a wide range topics. Because the approach is data driven, no effort was

made to go beyond these atoms, at their source of conception. These codes represented

a slightly abstract but concise collection of the various feelings and opinions of the users,

and identifies overlap and disparity between the responses.

After generating the code set, the next phase is to start grouping the codes together

to find candidate themes and sub-themes. Often codes will reside in multiple themes

and attention must be given to merging highly similar candidate themes or splitting up

themes that begin to diverge or attempt to convey too much information. The generated

sub-themes can be found in Appendix D.4 on page XXXVIII. This phase is exploratory

and experimental, and while producing the list of candidate themes the analysis often

resulted in contradictory statements. For instance three sub-themes emerged regarding the

amount of information in the Lich.js demo. These themes include ‘The demo had too much

overwhelming material’, ‘The demo needed more material or was lacking information’,

and ‘The demo was well made’. The contradictions here do not mean that the analysis

has bad results, but in fact these disparities accurately reflect that the respondents held

differing opinions regard how much information should be in a live coding demo, and this

opinion can be orthogonal to other opinions, such as “There is interest in the continuing

development of Lich.js.”

Finally a series of major themes were generated by synthesizing these sub-themes,

and identifying overlap and congruity, while discarding themes with little support. After

applying this process four themes were developed:

• Web based music systems are desirable

• Anonymous live coding collaboration using Lich.js is difficult and potentially unde-
sirable for some users

• The graphics implementation had several technical issues and many users were un-
interested in this functionality

• Despite technical issues, the novelty and utility of Lich.js is recognized

These themes will be addressed in turn starting with “Web based music systems are

desirable”. The codes extracted from the data set in someways obscure this theme as

Chapter 6. Quick Live Coding Collaboration in the Browser 109

their atomic structure points often at particular features or behavior. For instance, a com-

mon code in the data set is ‘fast implementation’, which at first might simply indicate the

general notion that the Lich.js Read Evaluation Print Loop (REPL) model works well at

producing live coded music. When collecting codes a more general set of themes emerged

based off codes such as “Fast sound generation cool”, “Easy setup most positive”, “Easy

to use”, “Browser implementation easy.”, and “Browser implementation is novel.” These

codes coalesce to form a theme that the browser implementation lowers frictions for users

significantly. This theme is born out by specific quotes in the feedback as well, such as

“Great to work in browser - easy startup, and sample exercises start well”, “I got results im-

mediately”, and “Definitely the possibility to interact with others through a browser (was

the most positive aspects of the experience).”. Considering the quantitative results from

earlier, this theme is substantiated by the results for the fourth Likert item “The browser

based implementation is useful”. This particular item had the strongest reported positive

attitude and also held the highest consensus of the individual Likert items. The data, both

quantitative and qualitative, strongly suggests that browser based music systems are of

high interest to the respondents.

Web Audio is still a novel technology, and it was one of the compelling reasons to

develop Lich.js. For these reasons it is unsurprising that many of the respondents (of a

web based survey no less) respond favorably to a browser based implementation for a

live coding language. On the other hand, “Anonymous live coding collaboration using

Lich.js is difficult and potentially undesirable for some users”, was a theme that organi-

cally emerged from the analysis. Many responses were coded with closely relating intents

such as “Couldn’t easily edit with other users”, “Collaborative features unclear”, and “Chat

worked different than expected.” While the language was designed to facilitate collabo-

ration, it was still one of the more esoteric features implemented. There was a significant

amount of new information presented, and having an extra layer of needing to then co-

ordinate or sustain an evolving dialog with other users increases that complexity. Several

users reported technical difficulties, some of which was the result of poor documentation

in the demo such as the issues with chat, and other problems like the problems reported

with the display of multiple terminals could be pointed out as a design flaw. Not all of it

was negative, and many other responses ranged from mixed to positive, such as “There

was somebody else on at the same time, and it was kind of cool when our sounds meshed

well. Sometimes.” and “Definetly the possibility to interact with others through a browser

(was the most positive aspect of the experience).”, and “The chat is very nice, the sync is

very precise.”

Beyond these comments though was another notion that the collaborative features

were uninteresting, or actively undesirable to participants. Some responses include state-

ments such as “I never tried that feature.”, “I didn’t communicate with anyone while trying

Lich.js.”, and “Having multiple people playing around trying to figure everything out while

I was trying to figure things out is a little frustrating.” A potential issue is that live coding

collaboration with anonymous users may be disruptive when users are still learning or

are unprepared. This may not be an issue for users that actively seek out this interac-

Chapter 6. Quick Live Coding Collaboration in the Browser 110

tion, by inviting a friend or by expecting visitors. One respondent notes “No response to

chat, so not sure if they were aware of me.” and another “It might be nice if there was a

way to mute the other people on the server during experimentation.”. The wide range of

responses including indifference is corroborated by the quantitative responses to “It was

difficult to communicate and collaborate.” This range could be explained by a multiplicity

of factors including technical issues, lack of interest, organizational requirements for ar-

ranging collaborations, chance interactions with other visitors, a lacking implementation

and design for collaborative features, and an abundance of other features presented to

new users.

Another major theme is that “The graphics implementation had several technical issues

and many users were uninterested in this functionality.” Lich.js is designed as an audio

and visual live coding language, although the current state of the language greatly favors

audio features over graphical ones. Beyond this, is that the graphics functionality appears

to be much more fragile and hardware dependent than the audio functionality. Users

reported that “The graphics functionality didn’t run in my computer.” and “Didn’t get

to try these, although I tried - perhaps some server crash?” The strongest response was

that the users simply weren’t interested in the feature or that they never actually used it.

Many responses include sentiments such as “Didn’t use it. Probably want to mark this as

optional.”, “Never got that far.”, and “Sorry, didn’t go there yet ... not usually my thing.”

In fact, indifference towards or the lack of interest in the graphics functionality is the

strongest theme in the qualitative feedback. There were some users who found the live

coded visual support to be of note such as the user who states “The ability to utilize the

pattern streaming system with the graphics was incredibly intuitive and useful.”

While there was a healthy amount of criticism or noted issues with Lich.js, there was

still a large and consistent theme that “Despite technical issues, the novelty and utility of

Lich.js is recognized” Many users expressed interest in the combination of web technolo-

gies and a Haskell based language: “It opened up a door I thought was closed in web dev,

which is using a FP language to work with complex models on the web browser.” Other

users appreciated the patterns and scales, stating “I enjoyed writing so easily patterns and

chords.” or that “Pattern sequencing was easy and fun.” Additionally, comments regarding

the collaborative and graphical features previously mentioned were also lauded by some

respondents. This theme lines up with the overall Likert scale results which shows posi-

tive, but not overly positive attitudes towards Lich.js, and this attitude is shown to have a

high consensus.

Chapter 7

Conclusion

Chapter 7. Conclusion 112

7.1 Brief Review
There will be a brief review of the narrative of the thesis so far, before moving on to discuss

findings and conclusions. A brief history of network music and research was summarized,

which attempted to capture the diverse background for this field of research. A small in-

formal survey of practicing network musicians followed, which searched for initial themes

regarding liveness and networked collaborations.

The next three chapters all proposed a new network music interface, each designed

to address challenges and opportunities using different approaches. First, Yig, the Father
of Serpents, proposed a two dimensional space for creating and manipulating feedback

network lattices, and the unique behaviors these feedback systems exhibited. A formal

comparative user study ended the chapter that compared not only Yig to an established

network music instrument, Auracle, but also explored the effects of co-location and distri-

bution on networked music collaborations.

Next, Shoggoth was presented, a 3D networked music environment for creating and

manipulating musical patterns, collaboratively. A small informal analysis followed, where

Curtis McKinney and Cole Ingraham, two performers from the band Glitch Lich, pro-

vided commentary on the utility, execution, and design of Shoggoth. Finally, a web based

live coding language, named Lich.js, was presented. Lich.js attacked the problem of net-

worked interfaces from a different approach to the highly graphical interfaces previously

discussed. Afterwards a survey on Lich.js was considered, using quantitative and qualita-

tive data to formulate a discussion on the design and merit of Lich.js, while also exploring

broader topics regarding networked collaborations.

7.2 Summary of Findings
The search conducted in this thesis explored four key questions:

1. How do distribution, virtual spaces, communication, and autonomy impact a net-
work music interface and collaboration?

2. What characteristics define a successful live networked music interface and collabo-
ration?

3. Do computer musicians consider interfaces with virtualized environments to embody
those characteristics?

4. Do musicians have a preference regarding co-location and distribution in collabora-
tions?

Each question will be considered in turn, drawing upon the findings of the previous

chapters.

7.2.1 How do distribution, virtual spaces, communication, and autonomy

impact a network music interface and collaboration?

The three systems presented as a part of this thesis, Yig, Shoggoth, and Lich.js, all support

distribution, virtual spaces, communication, and autonomy. These features have large

Chapter 7. Conclusion 113

impacts on their design, utility, ease of use, stability, and the music they produce. For

instance, distribution was a requirement for the band Glitch Lich to allow for the per-

formances listed in Chapter 1. During the years that those performances were given the

band had members in the USA, UK, and China. That music could not have been made

without this feature. Yet, all the systems were greatly complicated by the necessity of

supporting not only collaborative performances, but distributed performances. This re-

quired more CPU overhead to render full audio for all the nodes in the network. It also

produced a more complicated and error prone system. Many of the issues that users re-

ported in Chapters 4, 5, and 6 can be attributable to problems introduced by attempting to

support distributed performances. It also introduced unique design decisions when using

techniques like feedback with real–time input, which can produce divergent results in the

distributed renderings.

Yig, Shoggoth, and Lich.js all had some kind of support for a virtual space that the

performance resided in. Using a virtual space immediately creates relationships between

the performers. Relationships such as position, ownership, and co–dependancy arise out

of having these kinds of spaces where the players can collaborate using a system with

some kind of sense of spatial physical relationships or behavior. User evaluation showed

interest in this usage of virtual spaces. The avatars for other players was reported to help

give a sense of presence for the other performers, as well as convey what their actions

were.

Communication is an important part of any collaboration, but it can be complicated

in networked and distributed performances. Yig, Shoggoth, and Lich.js all relied on a

simple chat system for basic communication. Users in the evaluations often ignored or

were indifferent towards this feature. Glitch Lich used the chat not only as a means of

communicating with each other, but directly with the audience as well. Some perfor-

mances would also pull comments from twitter and display them in the chat during the

performance to allow a live conversation amongst the band and the audience about the

unfolding performance. There are many other possible methods that could be explored

regarding communication in networked collaborations. This is a highly under–researched

part of network music performance.

Autonomy is an important part of the Glitch Lich aesthetic, and it has a unique impact

on collaborative performances. By introducing autonomy into a network interface, the

performance becomes a collaboration not only amongst the performers, but also with the

system itself. Occasionally this can produce undesirable results, which some of the users in

the evaluations noted. Other times it can create a dynamic environment, with pleasantly

unexpected behaviors. Unlike distribution or communication, autonomy is much more

specific to the aesthetic of Glitch Lich, and other network collaborators may find this

feature does not suite their aesthetic and design goals.

Chapter 7. Conclusion 114

7.2.2 What characteristics define a successful live networked music

interface and collaboration?

Views regarding interfaces and collaborations varied wildly amongst the many musicians

represented in the studies in the thesis. While there was no singular theme that dominated

discussions, many smaller, complimentary, and occasionally opposing, emerged. Commu-

nication, embodiment, individuality vs. the group, co-discovery, ownership, privacy, vir-

tual awareness, technical friction, and graphical representation were all important themes

discussed by the various collaborators involved. Communication was a particularly strong

theme, and performers consistently noted that non-verbal communication was an integral

part of networked performances. Others commented that virtual mediation of visual cues

was also useful. Chat systems were often mentioned, yet few of the responses felt very

strongly about using it. Even musicians invoked in distributed collaborations would forgo

typing in chat to instead directly engage the other performers musically.

Another important theme was the capacity for independence, personality, and a sense

of ownership. This theme had a dynamic relationship with the performers. Study partic-

ipants often mentioned the desire to have mute buttons or private places in the virtual

space to work. Users felt guilt for accidental virtual destruction and others felt joy from

their digital ‘griefing’. Additionally, several musicians noted that a motivating factor for

engaging in network music at all was to benefit from hearing and interacting with their

collaborators personality, through the various interfaces and in the music. This is fur-

ther substantiated by the desire for some groups to allow for individual interfaces that

communicate across an ensemble meta-structure, communicating using a specification or

according to emergent rules.

Yet there were also a sentiment that network music was the place for group dynamics,

not displays of individual virtuosity. The use of gestural controllers was not popular, and

instead basic keyboards, mice, and sliders, were noted as the core input systems for the

queried network ensembles. This may be in part due to another strong theme, shared

discovery. Users noted that some of their most memorable moments were surprising inter-

actions. These interactions were sometimes chance overlapping of intended action in the

interface by players that created unforeseen behavior. They were also emergent themes

and sounds that combined in unpredicted ways. This ties closely with another strong

theme, improvisation. Because the musicians enjoyed co-discovery, often the music be-

ing performed by these kind of ensembles incorporates a certain amount of ‘openness’,

and for that reason systems and interfaces that can allow for fast reactions were noted as

important characteristics, so as to increase the speed of development of the group.

Lastly technical friction and fragility was a consistent theme in all the studies. An in-

terface with many bugs that crashes often make not only development slow, but rehearsal

and performance more difficult. The ambitions of the various network bands occasionally

out paced the stability of the software they use and produce. Furthermore these compli-

cations made it more difficult for less experienced users to engage with the medium.

Chapter 7. Conclusion 115

7.2.3 Do computer musicians consider interfaces with virtualized

environments to embody those characteristics?

This thesis does not attempt to answer the question broadly, but rather proposes three

system with various kinds of virtualized environments, and evaluates whether these sys-

tems meet the criteria and aesthetics laid out in the previous section. Considering the

results from the various studies as a whole users were generally excited by the technology,

and were interested in the musical potential they presented. There were however many

notable issues identified in the evaluations regarding the three systems. Yig, the Father of
Serpents performed slightly better than Auracle in the quantitative analysis of the study re-

sults. Participants reported higher attitudes regarding collaboration, usefulness, intuitive

design as well as overall assessment. In no category quantifiably measured did Auracle
out perform Yig. Yet the qualitative analysis revealed a diversity of opinions regarding

both systems. While most users did not enjoy making music with Auracle as much as Yig,

there were participants who held this position. Additionally some users found Yig to be

confounding or had issues with bugs. Still, many users found Yig to facilitate compelling

collaborations and encourage co-discovery.

Shoggoth had a less rigorous evaluation, but the two network musicians still reported

useful information from the perspective of advanced users. Shoggoth was lauded for the

range of sounds it could produce, as well as for the ease of pattern manipulation. Yet,

Shoggoth was also directly criticized for having technical problems and a limited input

system. Lich.js saw an open survey for evaluation. The language was designed to allow

for facilitating collaborations with low technical friction. To do so it leveraged web tech-

nologies, a feature that was highly regarded by the participants. Quantitative analysis

marked Lich.js as scoring generally favorable attitudes from the participants. Qualitative

analysis revealed that the specific features of the language itself were assessed more di-

versely, with many users not able to fully complete the material in the demo before filling

out their survey responses. Some users reported problems understanding the functional

programming basis, but many others noted the intuitive design of the pattern system in

Lich.js.

7.2.4 Do musicians have a preference regarding co-location and

distribution in collaborations?

The evaluation in Chapter 4 directly addressed the issues of co-location and distribution

in networked music collaborations. Quantitative analysis showed that there was actually

a slight bias for distributed collaborators to report positive attitudes regarding the col-

laboration and software. Given the small sample size and the narrow margin by which

distribution led co-location, no conclusive result can be or will be claimed. The qual-

itative analysis showed that while certain individuals had biases regarding the locality

of the collaboration, these biases did not measuredly manifest themselves amongst the

practitioner populations at large. These findings are further substantiated by the com-

mentary in Chapter 3. This commentary from experienced practitioners is highly critical

of distributed performance, and yet not every comment is deriding. The utility of the

Chapter 7. Conclusion 116

technology to facilitate performances when otherwise impossible is noted, as well as the

beneficial effects of negating performance anxiety. The question remains open, and will

require further research to better understand.

7.3 Discussion and Future Work
Yig, the Father of Serpents, Shoggoth, and Lich.js represent significant efforts to create

interactive systems with aesthetically driven design that present new opportunities for

collaboration. Each of these have aspects that were more successful and aspects that were

disappointing. Glitch Lich performed more with Yig than Shoggoth or Lich.js, in large

part because it is reliable, generally sounds good, and makes collaboration easy. Yig can

also be quite limiting in the range of expression and lacks sophisticated techniques for

dealing with rhythm and harmony. Shoggoth is the most successful system of the three

for combining a collaborative virtual space that is also visually striking. The rhythmic

sophistication exceeds Yig, but the tools for harmonic relationships are quite primitive.

Additionally, of the three, Shoggoth is the most error and crash prone, contributing to

Glitch Lich preferring Yig for performances on occasion.

Lich.js has a much wider range of expression than Yig or Shoggoth, as well as much

deeper systems for handling rhythm, harmony, and patterns. For a live coding language

Lich.js can be slow to pivot towards large structural changes during performances. While

the web audio implementation is serviceable, it is still incredibly more limited and slower

than native based alternatives. To make matters worse, Web Audio still varies wildly in

performance between implementations. During Lich.js development Firefox was found

to be the second fastest fully compliant implementation of the major browsers, but slow

enough to not be reasonably useful for an actual performance. The Chrome Web Audio

implementation is much faster than Firefox, which is why Glitch Lich performances al-

ways use Chrome. These performances have been troubled by an issue in Chrome that

was reported to the issue tracker over two years ago from the writing of this (https:

//bugs.chromium.org/p/chromium/issues/detail?id=379753#), but which is still open.

This bug causes ScriptProcessorNode objects to leak, leading every Lich.js performance to

eventually crash the browser tab after anywhere from twenty to forty minutes of average

activity.

Given the realities of these three systems, there is still work to do. Web Audio is not

yet mature enough, and network music requirements exceed the realities at the moment.

Creating Lich.js has demonstrated the utility of pure functional programming for network

music, but also the limitations of a pseudo–Haskell language. There are some significant

shortcomings in Lich.js, such as the lack of a strong type system, no support for type-

classes, and no compiler enforcement for monadic IO. These kinds of live, collaborative,

audio–visual systems are difficult to make in any language, and a naive pseudo–Haskell

implementation can be quite awkward. Functional Reactive Programming (FRP) has the

potential to elegantly solve many of the issues that Yig, Shoggoth, and Lich.js suffer from

in their implementation. FRP uses two main abstractions, Events and Behaviors, for mod-

Chapter 7. Conclusion 117

eling time–varying values. This approach allows for declarative programs to describe in-

teractive systems that exist in time. This is a great fit for the kinds of systems like Yig and

Shoggoth. Another advantage is that FRP could be used to create a more similar syntax

and set of semantics for describing different domains, such as audio or graphics, which in

the previous systems had very different implementation details.

Of the three systems, Lich.js made spontaneous collaboration the most trouble free,

which can be supported by the fact that the public Lich.js server (chadmckinneyaudio.com/

lich) has been running for over a year without any downtime. Having a group simply go

to a website is much easier than the old Glitch Lich experience of finding IP addresses,

setting ports, starting programs, tweaking router settings, and debugging issues. Future

systems will need to find a way to make native systems this fluid for collaborations.

Beyond implementation details, there are still many opportunities left for creating

more sophisticated frameworks for collaboration and relationships between performers.

While Yig, Shoggoth, and Lich.s were focused on collaboration, they only explored a small

fraction of the possibilities for how to utilize the unique affordances of real–time collabora-

tive electronic music performances. Additionally, each of these systems had very primitive

representations of the performers and their actions. Future work will explore how to cre-

ate systems that take further advantage of virtual representation. Finally, a methodology

for creating systems that are both expressive and agile needs further investigation. Yig,

Shoggoth, and Lich.js each balanced expression and agility with varying success. Future

work will explore how using an FRP based implementation with expanded bandwidth

for modalities of input, and more sophisticated frameworks for group dynamics might

leverage a wide range of expression while still allowing for sharp transitions and regular

development during performances.

Bibliography
Aagaard, J. (2013). Slub, live. https://twitter.com/JohsAagaard. [Accessed May 28th,

2014].

Aaron, S. (2014). Overtone. http://overtone.github.io/. [Accessed May 28th, 2014].

Aaron, S., & Blackwell, A. F. (2013). From sonic pi to overtone: Creative musical experi-
ences with domain-specific and functional languages. In Proceedings of the First ACM
SIGPLAN Workshop on Functional Art, Music, Modeling & Design, FARM ’13, pp.
35–46.

Adam, T., Agafonova, N., Aleksandrov, A., Altinok, O., Sanchez, P. A., & Aoki, S. (2011).
Measurement of the neutrino velocity with the opera detector in the cngs beam.
Minos, 1109(November), 1–24.

Adams, M. (2011). Lee de Forest: King of Radio, Television, and Film. Springer.

Alleweldt, F., Kara, S., Fielder, A., Brown, I., Weber, V., & McSpedden-Brown, N. (2012).
Cloud Computing Study. http://ec.europa.eu/information_society/activities/
cloudcomputing/docs/cc_study_parliament.pdf. [Accessed June 20th, 2012].

Anonymous (1909). Distributing music over telephone lines. Telephony, 699–701.

Apple Inc. (2014). Apple app store. https://itunes.apple.com/us/genre/ios-music/
id6011?mt=8. [Accessed May 28th, 2014].

Auslander, P. (2008). Liveness: Performance in a Mediatized Culture. Routledge.

Barbosa, A. (2003). Displaced Soundscapes: A Survey of Network Systems for Music and
Sonic Art Creation. Leonardo Music Journal, 13: 53–59.

Barbosa, A. (2006). Computer-Supported Cooperative Work for Music Applications. Ph.D.
thesis, Universitat Pompeu Fabra.

Bell, R. (2011). An interface for realtime music using interpreted haskell. In Proceedings
of the Linux Audio Conference, LAC ’11.

Bencina, R. (2005). Oscgroups. http://www.audiomulch.com/~rossb/code/oscgroups/.
[Accessed May 2010].

Bencina, R. (2013). oscpack. http://www.audiomulch.com/~rossb/code/oscpack/. [Ac-
cessed May 29th, 2014].

Benedetti, W. (2012). Taipei assassins triumph in ’league of leg-
ends’ world finals. http://www.nbcnews.com/technology/ingame/
taipei-assassins-triumph-league-legends-world-finals-1C6448579. [Accessed
May 29th, 2014].

Berio, L., & Dalmonte, R. (2007). Intervista sulla musica. Laterza.

Bibliography 119

Berlioz, H., Malherbe, C., & Weingartner, F. (1900). Symphonie Fantastique ; And, Harold
in Italy:. Dover Music Scores Series. Dover Publications.

Birmingham Laptop Ensemble (2011). Manifesto. http://bilensemble.wordpress.com/
manifesto/. [Accessed June 25th, 2012].

Bischoff, J. (2003). Aperture. http://www.transjam.com/aperture/aperture_client.
html. [Accessed June 7, 2012].

Bischoff, J., Gold, R., & Horton, J. (1978). Music for an interactive network of microcom-
puters. Computer Music Journal, 2(3), pp. 24–29.

Bittanti, M., & Quaranta, D. (2006). Gamescenes: art in the age of videogames. Saggistica
d’arte. Johan & Levi.

Bligh, J., Jennings, K., & Tangney, B. (2005). Designing interfaces for collaborative mu-
sic composition. In International Conference on Multimedia, Image Processing and
Computer Vision, pp. 218–222 Madrid.

Borgeat, P., Ballweg, H., & Romero, J. (2012). Benoitlib. https://github.com/
cappelnord/BenoitLib. [Accessed May 29th, 2014].

Boulanger, R. (Ed.). (2000). The Csound Book: Perspectives in Software Synthesis, Sound
Design, Signal Processing, and Programming. No. v. 1. Mit Press.

Bozkurt, B. (2011a). Circuli. http://www.earslap.com/projectslab/circuli. [Accessed
June 20, 2012].

Bozkurt, B. (2011b). Otomata. http://www.earslap.com/projectslab/otomata. [Ac-
cessed June 20, 2012].

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research
in Psychology, 3(2): 77–101.

Brinner, B. (1995). Knowing Music, Making Music: Javanese Gamelan and the Theory of
Musical Competence and Interaction. University of Chicago Press.

Brodsky, J. (2013). Jsaxus. https://github.com/jonbro/jsaxus. [Accessed May 29th,
2014].

Brougher, K., Strick, J., Wiseman, A., & Zilczer, J. (2005). Visual music: synaesthesia in art
and music since 1900. Thames & Hudson.

Brown, A. (2010). Network jamming: Distributed performance using generative music.
In Proceedings of the 2010 conference New Interfaces for Musical Expression, pp. 283–
286.

Brown, C. (2003). Eternal network music. http://www.transjam.com/eternal/eternal_
client.html. [Accessed June 7, 2012].

Brown, C., & Bischoff, J. (2002). Indigenous to the Net: Early Network Music Bands
in the San Francisco Bay Area. http://crossfade.walkerart.org/brownbischoff/
IndigenoustotheNetPrint.html. [Accessed 2 August 2010].

Burk, P. (1997). Transjam. http://www.transjam.com/. [Accessed May 29th, 2014].

Burk, P. (1998). Jsyn - a real-time synthesis api for java. In International Computer Music
Conference.

Bibliography 120

Burk, P. L. (2000). Jammin’ on the web - a new client / server architecture for multi-user
musical performance. In International Computer Music Conference.

Burkart, P., & McCourt, T. (2006). Digital Music Wars: Ownership and Control of the
Celestial Jukebox. Rowman & Littlefield Publishers.

Buyya, R., Broberg, J., & Goscinski, A. (2011). Cloud Computing: Principles and Paradigms.
Wiley.

Bynens, M. (2010). Jsperf. http://jsperf.com/. [Accessed May 29th, 2014].

Cabello, R. (2010). Three.js. http://threejs.org/. [Accessed May 29th, 2014].

Cabello, R. (2013). Glsl sandbox. http://mrdoob.com/139/GLSL_Sandbox. [Accessed May
29th, 2014].

Cáeres, J.-p., Hamilton, R., Iyer, D., Chafe, C., & Wang, G. (2008). To the edge with
china: Explorations in network performance. In ARTECH 2008: Proceedings of the
4th International Conference on Digital Arts.

Carôt, A. (2004). Musical Telepresence – A Comprehensive Analysis Towards New Cognitive
and Technical Approaches. Ph.D. thesis, Universität zu Lübeck Germany.

Carôt, A., Krämer, U., & Schuller, G. (2006). Network music performance (nmp) in narrow
band networks. In Audio Engineering Society Convention 120.

Carter, Z. (2014). Jison. http://zaach.github.io/jison/docs/. [Accessed May 29th,
2014].

Casa, D. D., McDonald, S., Stutters, J., & Ryan, T. C. (2013). Livecodlab. http://www.
sketchpatch.net/livecodelab/index.html. [Accessed May 29th, 2014].

Cascone, K. (2003). Grain, Sequence, System (three levels of reception in the performance
of laptop music). In Kleiner, M. S., & Szepanski, A. (Eds.), Soundcultures. Suhrkamp.

Center, P. R. (2014). Pew Research Center Internet Project Survey. http://www.
pewinternet.org/data-trend/internet-use/latest-stats/. [Accessed August
29th, 2015].

Chafe, C. (2003). Distributed Internet Reverberation for Audio Collaboration. In Audio
Engineering Society International Conference.

Chafe, C. (2009). Tapping into the internet as a musical/acoustical medium. In Contem-
porary Music Review, Vol. 28, pp. 413–420.

Chafe, C., Wilson, S., Leistikow, A., Chisholm, D., & Scavone, G. (2000). A simplified
approach to high quality music and sound over ip. In In Proceedings of the COST G-6
Conference on Digital Audio Effects (DAFX-00, pp. 159–164.

Chafe, C., Wilson, S., & Walling, D. (2002). Physical model synthesis with application to
internet acoustics. In IEEE - Signal Procesing Society. Proceedings of the International
Conference on Acoustics, Speech and Signal Processing.

Chew, E., Sawchuk, A., Tanoue, C., & Zimmermann, R. (2005). Segmental tempo analysis
of performances in user-centered experiments in the distributed immersive perfor-
mance project. In Sound and Music Computing.

Bibliography 121

Chung, B. (2013). Multimedia Programming with Pure Data: A comprehensive guide for
digital artists for creating rich interactive multimedia applications using Pure Data.
Community experience distilled. Packt Publishing.

Ciccarelli, P., & Faulkner, C. (2004). Networking Foundations. John Wiley & Sons.

Cockos Incorporated (2004). Ninjam. http://www.cockos.com/ninjam/. [Accessed Febru-
ary 6th 2012].

Collins, K. (2008). Game Sound: An Introduction to the History, Theory, and Practice of
Video Game Music and Sound Design. Mit Press.

Cooperstock, J., & Spackman, S. (2001). The recording studio that spanned a conti-
nent. In Proceedings of the First International Conference on WEB Delivering of Music
(WEDELMUSIC’01), pp. 161– Washington, DC, USA. IEEE Computer Society.

Cramer, F. (2005). Software dystopia: Netochka Nezvanova - Code as cult. Words Made
Flesh: Code, Culture, Imagination. [Accessed June 20, 2012].

Crawley, M. (2012). The R Book. Wiley.

Cunningham, M., Kluver, B., Tudor, D., Moog, B., Coker, C., Kompfner, R., & Riley, T.
(2008). John Cage: Variations VII/ 9 Evenings in Theatre and Engineering. ArtPix,
Experiments in Art and Technology.

Cycling ’74 (2014). Max/MSP. http://cycling74.com/. [Accessed May 29th, 2014].

De Campo, A., & Rohrhuber, J. (2004). Waiting and Uncertainty in Computer Music
Networks. In Proceedings of the 2004 International Computer Music Conference.

De Jong, J. (2006). Collective Talent: a Study of Improvisational Group Performance in
Music. Amsterdam University Press.

Dean, R. (2003). Hyperimprovisation: Computer-interactive Sound Improvisation. A-R
Editions.

Delaney, T., & Madigan, T. (2015). The Sociology of Sports: An Introduction, 2d ed. McFar-
land, Incorporated, Publishers.

DeSanctis, G., & Gallupe, R. B. (1987). A foundation for the study of group decision
support systems. Management Science, 33(5), 589–610.

d’Escriván, J. (2006). To sing the body electric: Instruments and effort in the performance
of electronic music. Contemporary Music Review, 25(1-2), 183–191.

Deutsch, D. (2012). The Psychology of Music. Elsevier Science.

Dinamoe Labs (2013). Plink. http://dinahmoelabs.com/plink. [Accessed August 1st,
2016].

Doornekamp, I. (2013). Worp. http://worp.zevv.nl/#Livecoding. [Accessed May 28th,
2014].

Dourish, P., & Bellotti, V. (1992). Awareness and coordination in shared workspaces. In
Proceedings of the 1992 ACM conference on Computer-supported cooperative work, pp.
107–114.

Duckworth, W. (2013). Virtual Music: How the Web Got Wired for Sound. Taylor & Francis.

Bibliography 122

Duckworth, W. (1999a). Cathedral An Interactive Work for the Web. In International
Computer Music Conference.

Duckworth, W. (1999b). Making music on the web. Leonardo Music Journal, 9, 13–18.

Duckworth, W. (2001). Cathedral. http://www.monroestreet.com/Cathedral/main.html.
[Accessed June 7, 2012].

eJamming Inc (2010). eJAMMING AUDiiO. http://ejamming.com/. [Accessed May 29th,
2014].

Essl, G. (2011). Automated ad hoc networking for mobile and hybrid music performance.
In Proceedings of the International Computer Music Conference, pp. 28–34.

FaceBook (2015). Facebook. https://www.facebook.com. [Accessed August 29th, 2015].

Fahie, J. (2011). A History of Wireless Telegraphy: Including Some Bare-Wire Proposals
for Subaqueous Telegraphs. Cambridge Library Collection – Technology. Cambridge
University Press.

Fernando Lindner Ramos, M. d. O. C., & Manzolli, J. (2003). Virtual studio: distributed
musical instruments on the web. In Brazilian Symposium on Computer Music.

Fiebrink, R., Wang, G., & Cook, P. (2007). Don’t forget the laptop: Using native input
capabilities for expressive musical control. In Proceedings of the 2007 Conference on
New interfaces For Musical Expression, p. 3.

Finch, A. (2014). The Unreal Game Engine: A Comprehensive Guide to Creating Playable
Levels. 3dtotal Team.

Fisher, S. S. (1991). Virtual Environments: Personal Simulations and Telepresence. Meckler,
Westport, CT.

Flanagan, D. (2006). JavaScript: The Definitive Guide. O’Reilly.

Florit, G. (2013). livecoding.io. http://livecoding.io. [Accessed May 29th, 2014].

Föllmer, G. (2005). Netzmusik: Elektronische, Äthetische und soziale Strukturen einer
partizipativen Musik. Organised Sound, 10(3), 185–192.

Fontan, J., & Goberna, D. (2013). Glsl sandbox. https://glsl.heroku.com/e#17427.0.
[Accessed May 29th, 2014].

Freeman, J. (2005). Graph theory. http://turbulence.org/Works/graphtheory/index2.
html. [Accesssed June 11, 2012].

Freeman, J. (2007). Graph theory: interfacing audiences into the compositional process.
In Proceedings of the 7th international conference on New interfaces for musical expres-
sion, NIME ’07, pp. 260–263 New York, NY, USA. ACM.

Freeman, J., Varnik, K., Ramakrishnan, C., Neuhaus, M., Burk, P., & Birchfield, D. (2005).
Auracle: a voice-controlled, networked sound instrument. Organised Sound, 10(3),
221–231.

Galenson, D. (2009). Conceptual Revolutions in Twentieth-Century Art. Cambridge Univer-
sity Press.

GMBH, D. M. (2012). Digital Musician. http://www.digitalmusician.net/. [Accessed
May 29th, 2014].

Bibliography 123

Google (2014a). Google play store. https://play.google.com/store/search?q=music&
c=apps. [Accessed May 28th, 2014].

Google (2014b). Lich.js, Chrome Experiments Feature. https://www.chromeexperiments.
com/experiment/lichjs. [Accessed August 29th, 2015].

Google (2015). Chrome. https://www.google.com/chrome/. [Accessed August 29th,
2015].

Google Inc. (2012). V8 engine. http://code.google.com/p/v8/. [Accessed June 20th,
2012].

Green, T., & Petre, M. (1996). Usability analysis of visual programming environments:
A cognitive dimensions framework. Journal of Visual Languages Computing, 7(2),
131–174.

Gresham-Lancaster, S. (2007). Is there no there there? video conferencing software as a
performance medium. In Music in the Global Village Conference.

Griffiths, D. (2014). Fluxus. http://www.pawfal.org/fluxus. [Accessed May 27th, 2014].

Grover, C. (2011). Flash CS5.5: The Missing Manual. O’Reilly Media.

Grudin, J., & Poltrock, S. E. (1991). Computer-supported cooperative work and group-
ware. tutorial notes. In Conference on Human Factors in Computing Systems.

Grudin, J., & Poltrock, S. (2011). Taxonomy and theory in computer supported coopera-
tive work. Computer, S.W. Kozlo(Oxford Univ. Press).

Gu, X., Dick, M., Kurtisi, Z., Noyer, U., & Wolf, L. (2005). Network-centric music perfor-
mance: Practice and experiments. IEEE Communications Magazine, 43, 86–93.

Gu, X., Dick, M., Noyer, U., & Wolf, L. (2004). Nmp - a new networked music performance
system. In Global Telecommunications Conference Workshops, pp. 176 – 185.

Hajdu, G. (2004). Composition and improvisation on the net. In Sound and Music Com-
puting Conference.

Hamilton, R. (2007a). Maps and legends: Designing fps-based interfaces for multi-user
composition, improvisation and immersive performance. In Kronland-Martinet, R.,
Ystad, S., & Jensen, K. (Eds.), Computer Music Modeling and Retrieval. Sense of
Sounds, 4th International Symposium, CMMR 2007, Copenhagen, Denmark, August
27-31, 2007. Revised Papers, Vol. 4969 of Lecture Notes in Computer Science, pp.
478–486. Springer.

Hamilton, R. (2007b). Maps and legends: Fps-based interfaces for composition and im-
mersive performance. In Proceedings of the 2012 International Computer Music Con-
ference, pp. 344–347.

Harris, J. (2011). Globalization and Contemporary Art. John Wiley & Sons.

Heiland-Allen, C. (2012). Clive. http://mathr.co.uk/blog/2012-12-25_clive.html. [Ac-
cessed May 28th, 2014].

Hersent, O., Boswarthick, D., & Elloumi, O. (2011). The Internet of Things: Key Applications
and Protocols. John Wiley & Sons.

Bibliography 124

Holmes, T., & Holmes, T. (2002). Electronic and Experimental Music: Pioneers in Technology
and Composition. Media and Popular Culture Series. Routledge.

H.P. Lovecraft (1931). At The Mountains of Madness. Arkham House.

Hugill, A. (2005). Internet music: An introduction. Contemporary Music Review, 24(6):
429–437.

Hyde, A., & Harger, H. (1998). Radio astronomy. http://radio-astronomy.net/. [Ac-
cessed June 21st, 2012].

Iber, M. (1999). Integer (internet generated radio). http://transmissionarts.org/work/
fc0atb. [Accessed June 7, 2012].

Ivanoff, I., & Jimenez, J. (2006). Flaxus. http://www.i2off.org/flaxus/screen.html.
[Accessed May 29th, 2014].

J. Rohruber, A. de Campo (2011). The republic quark. https://github.com/
supercollider-quarks/Republic. [Accessed May 29th, 2014].

Jin, D. (2010). Korea’s Online Gaming Empire. Mit Press.

Johansen, R. (1988). GroupWare: Computer Support for Business Teams. The Free Press,
New York, NY, USA.

Jones, F. (2006). The alphorn: Revival of an ancient instrument. The Consort, Journal of
the Dolmetsch Foundation, 62, 40–62.

Jordà, S. (1999). Faust Music On Line (FMOL) – An approach to Realtime Collective
Composition on the Internet. Leonardo Music Journal, pp. 5–12.

Jordà, S. (2002). FMOL: Toward user-friendly, sophisticated new musical instruments.
Comput. Music J., 26(3), 23–39.

Jordà, S. (2009). The reactable: Tabletop tangible interfaces for multithreaded musical
performance. Revista KEPES, 5(14): 201–223.

Joyent, Inc. (2012). Node.js. http://nodejs.org/. [Accessed June 20th, 212].

Kac, E. (1996). Ornitorrinco and Rara Avis: Telepresence Art on the Internet. Leonardo,
29(5), 389–400.

Kac, E. (1997). Telepresence art. http://ekac.org/telepresence.art._94.html. [Ac-
cessed 11th, 2012].

Kac, E. (2005a). Satellite Art – An Interview with Name June Paik. DIVA: Digital and
Video Art Fair. Originally published in Portuguese in the newspaper O Globo, Rio de
Janeiro, Brazil, in July 10, 1988.

Kac, E. (2005b). Telepresence & Bio Art: Networking Humans, Rabbits, & Robots. Studies in
Literature and Science. University of Michigan Press.

Karplus, K., & Strong, A. (1983). Digital synthesis of plucked-string and drum timbres.
Computer Music Journal, 7, 43–55.

Khronos Group (2013). Webgl - opengl es 2.0 for the web. http://www.khronos.org/
webgl/. [Accessed May 29th, 2014].

Bibliography 125

Kickstarter Inc. (2014). Kick starter. https://www.kickstarter.com/. [Accessed May
28th, 2014].

Kirk, R., & Hunt, A. (1999). Digital Sound Processing for Music and Multimedia. Music
Technology Series. Focal Press.

Kleimola, J. (2006). Latency issues in distributed musical performance. Seminar.

Knotts, S., & Hutchins, C. (2013). Network music festival. Information available at:
http://networkmusicfestival.org/. [Accessed May 29th, 2014].

Koka, P., McCracken, M. O., Schwetman, H., Zheng, X., Ho, R., & Krishnamoorthy, A. V.
(2010). Silicon-photonic network architectures for scalable, power-efficient multi-
chip systems. In Proceedings of the 37th annual international symposium on Computer
architecture, ISCA ’10, pp. 117–128 New York, NY, USA. ACM.

Konstantas, D., Orlarey, Y., Carbonel, O., & Gibbs, S. (1999). The distributed musical
rehearsal environment. Multimedia, IEEE, 6(3), 54 –64.

Konstantas, D. (1998). Overview of a telepresence environment for distributed musical
rehearsals. In Proceedings of the 1998 ACM symposium on Applied Computing, SAC
’98, pp. 456–457 New York, NY, USA. ACM.

Konstantas, D., Orlarey, Y., Gibbs, S., Carbonel, O., Moulin, J., Lyon, F., & Augustin, D. S.
(1997). Distributed musical rehearsal. In Procedings International Computer Music
Conference, No. 95.

Kurtisi, Z., Gu, X., & Wolf, L. (2006). Enabling network-centric music performance in
wide-area networks. Commun. ACM, 49(11), 52–54.

La Rosa, J. E. O. (2008). To un-button: Strategies in computer music performance to
incorporate the body as re-mediator of electronic sound. Master’s thesis, University
of California, San Diego.

Lambert, P. (1997). The Music Of Charles Ives. Composers of the Twentieth Century Serie.
Yale University Press.

Latta, C. (1991a). Notes from the netjam project. Leonardo Music Journal, 1(1), pp.
103–105.

Latta, C. (1991b). Notes from the NetJam Project. Computer Music Journal, 15.

Lazzaro, J., & Wawrzynek, J. (2001). A case for network musical performance. In Proceed-
ings of the 11th international workshop on Network and operating systems support for
digital audio and video, NOSSDAV ’01, pp. 157–166 New York, NY, USA. ACM.

Lee, S. W., & Essl, G. (2013). Live coding the mobile music instrument. In Proceedings of
the International Conference on New Interfaces for Musical Expression, pp. 28–34.

Leman, M. (2008). Embodied Music Cognition and Mediation Technology. Mit Press.

Levin, G., Gibbons, S., Shakar, G., Sohrawardy, Y., Gruber, J., Lehner, J., Schmidl, G., &
Semlak, E. (2001). Dialtones (A Telesymphony) Final Report. http://www.flong.
com/projects/telesymphony/. [Accessed June 9, 2012].

Li, Q., Jinmei, T., & Shima, K. (2007). IPv6 Core Protocols Implementation. The Morgan
Kaufmann Series in Networking. Morgan Kaufmann.

Bibliography 126

Liljedahl, J. (2014). Kymatica software. http://kymatica.com/Software/Software. [Ac-
cessed May 28th, 2014].

Loeliger, J., & McCullough, M. (2012). Version Control with Git: Powerful Tools and Tech-
niques for Collaborative Software Development. O’Reilly Media.

Loitsch, F. (2007). Exceptional continuations in javascript. In Proceedings of the 2007
Workshop on Scheme and Functional Programming, pp. 37–46.

Magnusson, T. (2010). An Epistemic Dimension Space for Musical Devices. In Proceedings
of the 2010 conference on New interfaces for musical expression, pp. 43–46.

Magnusson, T. (2011). The ixi lang: A supercollider parasite for live coding. In "Proceed-
ings of the International Computer Music Conference", pp. 198–200.

Magnusson, T., & Mendieta, E. H. (2007). The acoustic, the digital and the body: a
survey on musical instruments. In Proceedings of the international conference on New
Interfaces for Musical Expression, NIME ’07, pp. 94–99. ACM.

Marinescu, D., & Marinescu, G. (2011). Classical and Quantum Information. Academic
Press. Academic Press.

McCartney, J., et al. (2016). SuperCollider. http://supercollider.github.io/. [Accessed
August 1st, 2016].

McIntosh, T., & Madan, E. (2012). Silophone. http://www.silophone.net/. [Accessed
June 25, 2012].

McKinney, C. (2012). Yig, the Father of Serpents. https://github.com/ChadMcKinney/Yig.
[Accessed May 29th, 2014].

McKinney, C. (2013a). libsc++. https://github.com/ChadMcKinney/libscpp. [Accessed
May 29th, 2014].

McKinney, C. (2013b). Shoggoth. https://github.com/ChadMcKinney/Shoggoth. [Ac-
cessed May 29th, 2014].

McKinney, C. (2014a). Lich.js. https://github.com/ChadMcKinney/Lich.js. [Accessed
May 29th, 2014].

McKinney, C. (2014b). Lich.js beta release and evaluation. http://lurk.org/
groups/livecode/messages/topic/7ehxjpBLXfBW9oY8pC4kYY. [Accessed August
29th, 2015].

McKinney, C. (2014c). Lich.js demo. www.chadmckinneyaudio.com/lich. [Accessed August
29th, 2015].

McKinney, C. (2014d). Ot: Lich.js beta release and evaluation. http://article.
gmane.org/gmane.comp.audio.supercollider.user/108424/match=lich+js. [Ac-
cessed August 29th, 2015].

McKinney, C. (2014e). Quick Live Coding Collaboration In The Web Browser. In Proceed-
ings of New Interfaces for Musical Expression.

McKinney, C., & Collins, N. (2012a). Liveness In Network Music Performance. In "Proceed-
ings of the Live Interfaces: Performance, Art, Music Symposium".

Bibliography 127

McKinney, C., & Collins, N. (2012b). Yig, the Father of Serpents: A Real-Time Network
Music Performance Environment. In Proceedings of the Sound and Music Computing
conference.

McKinney, C., & Collins, N. (2013). An Interactive 3D Network Music Space. In Proceedings
of New Interfaces for Musical Expression.

McKinney, C., McKinney, C., O’Brien, B., & Ingraham, C. (2012). Glitch Lich: Lessons
learned from the creation of a transcontinental laptop quartet. In The Symposium on
Laptop Ensembles and Orchestras, pp. 116–122.

McKinney, C., & McKinney, C. (2012). Oscthulhu: Applying video game state based syn-
chronization to network computer music..

McLean, A. (2011). Artist-Programmers and Programming Languages for the Arts. Ph.D.
thesis, Department of Computing, Goldsmiths, University of London.

McLean, A., Griffiths, D., Collins, N., & Wiggins, G. (2010). visualisation-of-live-code. In
Proceedings Electronic Visualisation of the Arts, pp. 26–30.

McLean, A., & Wiggins, G. (2011). Texture: Visual notation for the live coding of pattern.
In Proceedings of the International Computer Music Conference, ICMC ’11.

McReynolds, T., & Blythe, D. (2005). Advanced Graphics Programming Using OpenGL. The
Morgan Kaufmann Series in Computer Graphics. Elsevier Science.

Microsoft (2014). Skype. http://www.skype.com/. [Accessed May 29, 2014].

Miell, D., MacDonald, R., & Hargreaves, D. (2005). Musical Communication. Oxford
University Press, USA.

Mieszkowski, K. (2002) http://www.salon.com/2002/03/01/netochka/. [Accessed June
20, 2012].

Miletto, E. M., Pimenta, M. S., Bouchet, F., Sansonnet, J.-P., & Keller, D. (2011). Principles
for music creation by novices in networked music environments. Journal of New
Music Research, 40(3), 205–216.

Mogees Ltd. (2014). Mogees. http://mogees.co.uk/. [Accessed May 28th, 2014].

Mojang (2013) https://minecraft.net/. [Accessed May 29th, 2014].

Morris, J. M. (2008). Structure in the Dimension of Liveness and Mediation. Leonardo
Music Journal, 59–61.

Mothersele, D. (2014). Cyril. http://cyrilcode.com/index.html. [Accessed May 28th,
2014].

Myspace (2012). Myspace. http://www.myspace.com/. [Accessed June 20th, 2012].

Navarro-Prieto, R., & Cañas, J. (2001). Are visual programming languages better? the role
of imagery in program comprehension. International Journal of Human-Computer
Studies, 54(6), 799–829.

Networks, P. (2011). Pando networks releases global internet speed study. http://www.
pandonetworks.com/Pando-Networks-Releases-Global-Internet-Speed-Study.
[Accessed Jun 11, 2012].

Bibliography 128

Neuhaus, M. (2004a). Auracle. http://www.auracle.org/. [Accessed May 29th 2014].

Neuhaus, M. (2004b). The broadcast works and audium. http://www.auracle.org/docs/
Neuhaus_Networks.pdf. [Accessed June 25, 2012].

Neuhaus, M. (2004c). The broadcast works: Radionet. http://www.kunstradio.at/
ZEITGLEICH/CATALOG/ENGLISH/neuhaus2c-e.html. [Accessed June 7th, 2012].

New York Miniaturist Ensemble (2005). Collaborative Composition Website. http://
nyme.org/collaborative.html. [Accessed June 20th, 2012].

Nezvanova, N. (2000). The internet, a musical instrument in perpetual flux. Comput.
Music J., 24(3), 38–41.

Nezvanova, N., & Föllmer, G. (2002). Interview with Netochka Nezvanova via email,
February 2002. http://www.hudba.de/interviews/Interview_Netochka.pdf. [Ac-
cessed June 25, 2012].

Nicholls, D. (2002). The Cambridge Companion to John Cage. Cambridge Companions to
Music. Cambridge University Press.

Nimtz, G., Heitmann, W., Roy-Brehonnet, F., & Jeune, B. (1997). Superluminal Photonic
Tunneling and Quantum Electronics. Progress in quantum electronics. Elsevier Sci-
ence.

Nunamaker, J. F., Dennis, A. R., Valacich, J. S., Vogel, D. R., & George, J. F. (1991).
Electronic meeting systems to support group work. Communications of the ACM,
34(7), 40–61.

Nyman, M. (1999). Experimental Music: Cage and Beyond. Music in the Twentieth Century.
Cambridge University Press.

Obermeyer, F. (2013). Livecoder. http://livecoder.net. [Accessed May 29th, 2014].

Oh, J., Herrera, J., Bryan, N. J., Dahl, L., & Wang, G. (2010). Evolving the mobile phone
orchestra. In New Interfaces for Musical Expression.

Oliver, B., Pierce, J., & Shannon, C. (1948). The philosophy of pcm. Proceedings of the
IRE, 36(11), 1324 – 1331.

Oliver, J., & Pickles, S. (2002). qa3pd. http://julianoliver.com/q3apd/. [Accessed May
29th, 2014].

Orchestra, L. (2012). Laptop orchestra. http://laptoporchestra.net/. [Accessed June
25th, 2012].

Osthoff, S. (2005). From Mail Art to Telepresence: Communication at a Distance in the
Works of Paulo Bruscky and Eduardo Kac. MIT Press.

Packard, H. (2009). Cense. http://www.hpl.hp.com/news/2009/oct-dec/cense.html.
[Accessed June 20th, 2012].

Paik, N. J. (1997). Nam June Paik: videa ’n’ videology, 1959-1973. Tova Press.

Paper, A. W., Council, T., Bargar, R., Church, S., Systems, T., Keislar, D., Fish, M., Pavo,
B. M., Microsoft, B. N., & Pennycook, B. (1998). Networking audio and music using
internet2 and next-generation internet capabilities. In Audio Engineering Society.

Bibliography 129

Pasachoff, N. (1996). Alexander Graham Bell: Making Connections. Oxford University
Press, USA.

Perevalov, D. (2013). Mastering openFrameworks: Creative Coding Demystified. Packt Pub-
lishing.

Perkis, T. (1999). The hub. Electronic Musician Magazine.

Perlis, V. (1974). Charles Ives Remembered: An Oral History. University of Illinois Press.

Phonotonic (2014). Interative music battle. http://www.phonotonic.net/. [Accessed May
28th, 2014].

Pilato, C., Collins-Sussman, B., & Fitzpatrick, B. (2008). Version Control with Subversion.
O’Reilly Media.

Pilgrim, M. (2010). HTML5: Up and Running. O’Reilly Series. O’Reilly Media.

Pimenta, M., Miletto, E., Flores, L., & Hoppe, A. (2011). Cooperative mechanisms for
networked music. Future Generation Computer Systems, 27(1), 100 – 108.

Polak, E. (2012). The Nomadic Milk Project. http://www.nomadicmilk.net/full/. [Ac-
cessed June 20th, 2012].

Ponticelli, F., & McColl-Sylveste, L. (2008). Professional haXe and Neko. Programmer to
Programmer. Wiley.

Postel, J. (1980). User datagram protocol. USC/Information Sciences Institute. RFC 768.

Postel, J. (1981). Transmission control protocol. USC/Information Sciences Institute. RFC
793.

Radioqualia (2004). Radio astronomy. http://www.audiohyperspace.de/en/2004/09/
radio-astronomy-2/. [Accessed June 21st, 2012].

Ramakrishnan, C. (2004). The architecture of auracle: a realtime, distributed, collabora-
tive instrument. In Proceedings of the 2004 conference on New interfaces for musical
expression, pp. 100–103.

Reactable Systems (2014). Reactable. http://www.reactable.com/products/mobile/.
[Accessed May 28th, 2014].

Reas, C., & Fry, B. (2007). Processing: A Programming Handbook for Visual Designers and
Artists. Mit Press.

Rebelo, P. (2006). Haptic sensation and instrumental transgression. Contemporary Music
Review, 25(1-2), 27–35.

Renaud, A., & Caceres, J. P. (2010). Playing the network: The use of time delays as
musical devices. In Proceedings of the International Computer Music Conference, pp.
244–250.

Rijnieks, K. (2013). Cinder: Begin Creative Coding. Packt Publishing, Limited.

Riot Games (2015). Worlds 2015 viewership. http://www.lolesports.com/en_US/
articles/worlds-2015-viewership. [Accessed August 1st, 2016].

Roads, C. (1996). The Computer Music Tutorial. Mit Press.

Bibliography 130

Roberts, C. (2014). Gibber 2.0. http://charlie-roberts.com/gibber/info/. [Accessed
May 29th, 2014].

Roberts, C., Wakefield, G., & Wright, M. (2014). The web browser as synthesizer and
interface. In Proceedings of the international conference on New Interfaces for Musical
Expression, pp. 313–318.

Rodden, T. (1992). A survey of cscw systems. Interacting with Computers, 3, 319–353.

Rogers, C. (2013). Web Audio API. http://www.w3.org/TR/webaudio/. [Accessed May
29th, 2014].

Rohrhuber, J. (2007a). Network music. In Collins, N., & d’Escrivan, J. (Eds.), Cambridge
Companion to Electronic Music, pp. 140–155. Cambridge University Press.

Rohrhuber, J. (2007b). Network music. In Collins, N., & d’Escrivan, J. (Eds.), Cambridge
Companion to Electronic Music, pp. 143–144. Cambridge University Press.

Rohrhuber, J., de Campo, A., Wieser, R., van Kampen, J.-K., Ho, E., & Hölzl, H. (2007).
Purloined Letters and Distributed Persons. In Music in the Global Village Conference
2007.

Rosenboom, D. (1976). Biofeedback and the arts, results of early experiments. Aesthetic
Research Centre of Canada.

Ryan, J. (2010). A History of the Internet and the Digital Future. Reaktion Books.

Salomon, D. (2006). Data Compression: The Complete Reference. Molecular biology intel-
ligence unit. Springer-Verlag London Limited.

Samp, K. (2013). Webgl Playground. http://webglplayground.net/. [Accessed May
29th, 2014].

Saper, C. (2001). Networked Art. University of Minnesota Press.

Sarkar, M. (2007). Tablanet: A real-time online musical collaboration system for indian
percussion. Master’s thesis, Massachusetts Institute of Technology.

Sawchuk, A. A., Chew, E., Zimmermann, R., Papadopoulos, C., & Kyriakakis, C. (2003).
From remote media immersion to distributed immersive performance. In Proceedings
of the 2003 ACM SIGMM workshop on Experiential telepresence, ETP ’03, pp. 110–120
New York, NY, USA. ACM.

Schiemer, G., & Havryliv, M. (2006). Pocket gamelan: tuneable trajectories for flying
sources in mandala 3 and mandala 4. In Proceedings of the 2006 conference on New
interfaces for musical expression, NIME ’06, pp. 37–42 Paris, France, France. IRCAM
— Centre Pompidou.

Schooler, E. (1993). Distributed music: A foray into network music. ftp://ftp.
packetdesign.com/outgoing/casner/NetMusicFest.pdf. [accessed Jun 4th, 2012].

Schroeder, F., Renaud, A. B., Rebelo, P., & Gualda, F. (2007). Addressing the Network:
Performative Strategies for Playing Apart. In Proceedings of the 2007 International
Computer Music Conference, pp. 133–140.

Scientific American (1891a). A long distance telephone concert. http://archive.org/
details/scientific-american-1891-02-28. [Accessed June 15th, 2012].

Bibliography 131

Scientific American (1891b). Long distance telephone concerts. http://archive.org/
details/scientific-american-1891-02-28. [Accessed June 15th, 2012].

Sexton, J. (2007). Music, Sound and Multimedia: From the Live to the Virtual. Music and
the Moving Image Series. Edinburgh University Press.

Shreiner, D. (2009a). Pearson Education.

Shreiner, D. (2009b). The Framebuffer. OpenGL Series.

Simon, D. (1980). Chambers: Scores by Alvin Lucier. Wesleyan.

Smule (2014). Auto rap. Available at: http://www.smule.com/apps#autorap. [Accessed
May 29th, 2014].

Sorensen, A. (2014). Extempore.. [Accessed May 28th, 2014].

Sorensen, A., & Gardner, H. (2010). Programming with time: Cyber-physical program-
ming with impromptu. ACM SIGPLAN Notices, 45(10), 822–834.

SoundCloud (2016). Soundcloud. https://soundcloud.com/. [Accessed August 1st,
2016].

St. Pierre, M., Stiles, J., & Bahn, C. (2006). Gps beatmap. http://faceremoval.com/face/
content/video-gps-beatmap. [Accessed May 29th, 2014].

Stanford University (2012). The stanford laptop orchestra. http://slork.stanford.edu/.
[Accessed June 25th, 2012].

Stelarc (2011). Internet eat. http://stelarc.org/?catID=20339. [Accessed August 1st,
2016].

Stelkens, J. (2003). peersynth: a p2p multi-user software synthesizer with new techniques
for integrating latency in real time collaboration. In in International Computer Music
Conference, pp. 319–322.

Summerfield, M. (2010). Advanced Qt Programming: Creating Great Software with C++
and Qt 4. Prentice Hall.

SurveyMonkey (2014). Survey monkey. https://www.surveymonkey.com. [Accessed Au-
gust 29th, 2015].

Sweeney, T. (1999). Unreal networking architecture. http://udn.epicgames.com/Three/
NetworkingOverview.html. [Accessed 16 May 2010].

Tanaka, A. (1999). Network Audio Performance and Installation. In International Com-
puter Music Conference.

Tanaka, A. (2000). Speed of Sound. In In: Machine Times. V2_organization.

Tanaka, A. (2003). Seeking interaction, changing space. In International Art and Commu-
nication Festival.

Tanaka, A. (2006). Interaction, Experience, and the Future of Music, Vol. 35 of Computer
Supported Cooperative Work, chap. 13, pp. 267–288. Springer.

Tanaka, A., & Bongers, B. (2001). Global string: A musical instrument for hybrid space.
In Fleischmann, M., & Strauss, W. (Eds.), Proceedings: Cast01 // Living in Mixed
Realities, pp. 177–181. MARS Exploratory Media Lab, FhG - Institut Medienkommu-
nikation.

Bibliography 132

Tanzi, D. (2001). Observations about music and decentralized environments. Leonardo,
34(5), 431–436.

Taylor, T. (2012). Raising the Stakes: E-Sports and the Professionalization of Computer
Gaming. Mit Press.

the Processing.js team (2012). Processing.js. http://processingjs.org/. [Accessed June
20th, 2012].

The Res Rocket Surfer Project (2004). History of the rocketears. http://www.jamwith.us/
about_us/rocket_history.shtml. [Accessed May 29th 2014].

Thorington, H. (2007). Interview: Scot gresham-lancaster. http://turbulence.org/
networked_music_review/2007/07/07/interview-scot-gresham-lancaster/. [Ac-
cessed 1 June, 2010].

Tipler, P., & Llewellyn, R. (2007). Modern Physics. W.H. Freeman.

Truab, P. (2010). Spatial Exploration: Physical, Abstracted, and Hybrid Spaces. Ph.D. thesis,
University of Virginia.

Twitter (2014). Twitter. https://www.twitter.com. [Accessed August 29th, 2015].

University of Colorado at Boulder (2012). The boulder laptop orchestra. http://cismat.
org/blork.html. [Accessed June 25th, 2012].

Valve (2016). Defense of the ancients 2. http://blog.dota2.com/. [Accessed August 1st,
2016].

Wang, G. (2002). Chuck: Strongly-timed, concurrent, and on-the-fly audio programming
language. http://chuck.cs.princeton.edu/. [Accessed June 20th, 2012].

Wang, G. (2007). A history of programming and music. In Collins, N., & d’Escrivan, J.
(Eds.), Cambridge Companion to Electronic Music, pp. 69–70. Cambridge University
Press.

Wang, G., & Cook, P. R. (2004). On-the-fly programming: Using code as an expressive
musical instrument. In Proceedings of the international conference on New Interfaces
for Musical Expression, pp. 138–143.

Wang, G., Essl, G., & Penttinen, H. (2008). Do Mobile Phones Dream of Electric Orches-
tras?. In International Computer Music Conference, pp. 24–29.

Wang, G., Misra, A., & Cook, P. R. (2006). Building Collaborative Graphical Interfaces in
the Audicle. In NIME ’06: Proceedings of the 2006 conference on New interfaces for
musical expression, pp. 49–52 Paris, France, France. IRCAM — Centre Pompidou.

Wang, J., Yang, J.-Y., Fazal, I. M., Ahmed, N., Yan, Y., Huang, H., Ren, Y., Yue, Y., Dolinar,
S., Tur, M., & Willner, A. E. (2012). Terabit free-space data transmission employing
orbital angular momentum multiplexing. Nature Photonics, advance online publica-
tion, –.

Ward, A., Rohrhuber, J., Olofsson, F., McLean, A., Griffiths, D., Collins, N., & Alexander, A.
(2004). Live Algorithm Programming and a Temporary Organisation for its Promo-
tion. In Goriunova, O., & Shulgin, A. (Eds.), read_me — Software Art and Cultures.

Watson, K. (2016). International music summit business report..

Bibliography 133

Weinberg, G. (2003). Interconnected Musical Networks: Bringing Expression and Thought-
fulness to Collaborative Group Playing. Ph.D. thesis, Massachusetts Institute of Tech-
nology.

Weinberg, G. (2005). Interconnected Musical Networks: Toward a Theoretical Frame-
work. Computer Music Journal, 29(2): 23–29.

Weiss, A. (2008). Varieties of Audio Mimesis: Musical Evocations of Landscape. Audio issues.
Errant Bodies Press.

Wessel, D., & Wright, M. (2002). Problems and prospects for intimate musical control of
computers. Computer Music Journal, 26(3), 11–22.

Williamon, A. (2004). Musical Excellence: Strategies and Techniques to Enhance Perfor-
mance. Oxford University Press, USA.

Wilson, C. (2013). A tale of two clocks. http://www.html5rocks.com/en/tutorials/
audio/scheduling/. [Accessed May 29th, 2014].

Wilson-Bokowiec, J., & Bokowiec, M. A. (2006). Kinaesonics: The intertwining relation-
ship of body and sound. Contemporary Music Review, 25(1-2), 46–57.

Wöhrmann, R., & Ballet, G. (1999). Design and architecture of distributed sound pro-
cessing and database systems for web-based computer music applications. Comput.
Music J., 23(3), 73–84.

Wolfe, A., & Wolfe, C. (2014). Jasuto. http://www.jasuto.com/. [Accessed May 29th,
2014].

Woszczyk, W., Cooperstock, J. R., Roston, J., & Martens, W. (2005). Shake, rattle and
roll: Getting immersed in multisensory, interactive music via broadband networks.
Journal of the Audio Engineering Society, 53(4), 336–344.

Wright, M. (2002). Open sound control specification. http://opensoundcontrol.org/
spec-1_1. [Accessed May 29th, 2014].

Xu, A., & Cooperstock, J. (2000). Real time streaming of multi-channel audio data over
internet 5120 (i - 3)..

Xu, G. (2003). Gps: Theory, Algorithms and Applications. Springer.

Yamagishi, S. (1998). Variations for WWW: Network Music by MAX and the WWW. In
International Computer Music Conference.

Yonamine, N. (2013). Coffeecollider. http://mohayonao.github.io/CoffeeCollider/.
[Accessed May 29th, 2014].

Z.B. Bishop and H.P. Lovecraft (1953). The Curse of Yig. Arkham House.

Zimmermann, R., Chew, E., Ay, S. A., & Pawar, M. (2008). Distributed musical perfor-
mances: Architecture and stream management. ACM Trans. Multimedia Comput.
Commun. Appl., 4(2), 14:1–14:23.

Appendices

I

Appendix A

Liveness In Network Music
Performance

Appendix A. Liveness In Network Music Performance III

A.1 Questionnaire on the Views of Network

Musicians About Liveness in Performance

1. Do you wish your responses to this questionnaire to be fully anonymous (the default)
or to be attributed to you personally if used in direct quotation?

2. How many members does your ensemble have?

3. What hardware (laptops, phones, kinect, instruments, etc..) does your ensemble
use?

4. What are the kinds of software, languages, and environments does your ensemble
use? Does everyone use the same collection or is there a mix?

5. Does your ensemble perform with members physical distributed among several lo-
cations?

6. What types of connections does your ensemble typically perform with, ie. Ethernet,
wireless, etc..

7. Do you use any kind of visual element during performances? If so please describe
the presentation?

8. Does your ensemble live code during performance? If so, do you show your screens?

9. How would you classify the genre or style of music that your ensemble performs?

10. How does your ensemble communicate with each other during performances?

11. Broadly, how do you feel network performance, and in particular your ensemble’s
approach to network music effects a sense of liveness as a performer?

12. How does your ensemble’s structure and approach influence your sense of involve-
ment in performance?

13. If your ensemble performs physically distributed, do you feel this effects a sense of
liveness or connectivity?

14. How well do you think your ensemble projects involvement and effort by its mem-
bers to a given audience?

15. How do your ensemble’s channels of communication impact on group awareness?
Do you find this to be successful and how do you compare it to more traditional
ensembles using acoustic instruments?

16. Given the network music context, in using any controller interface for your music,
how does the hardware effect the connection between effort and sonic output?

17. How do you feel your ensemble’s visual presentation is effected by your networking
setup? Does this effect your feeling of connection to the other performers during a
performance?

18. As a performer (of any kind of music) do you have any regular psychological re-
sponses to performing (anxiety, excitement, etc...) and how does performing net-
work music effect this response?

Appendix A. Liveness In Network Music Performance IV

19. If you perform electronic music as a solo performer as well, could you please describe
how your solo performance and networked performance work differs with respect
to liveness?

20. What do you think has worked well for your ensemble, and what do you think has
not, in regards to fostering a general sense of liveness during performance?

21. As an audience member for other network performances, do you feel observing a
networked performance differs from actively engaging in it? If so, why?

22. As an audience member, do you feel that multi-location ensembles are affected by
their physical distribution with regards to active engagement by all performers?

23. If you have any additional comments you would like to add, please note them here.

C-REC - INFORMATICS, ENGINEERING & DESIGN,
MATHS & PHYSICAL SCIENCES

RESEARCH ETHICS REVIEW - FEEDBACK

A. Research Project Details

Project title Preliminary Study on the Views of Network Musicians
about Liveness in Performance

Name of Principal
investigator

Chad McKinney (Nick Collins, supervisor)

School of Principal
investigator

Engineering and Informatics

B. General Comments about the Project

Ethics Review Feedback Form: C-RECIEM 1

Appendix A. Liveness In Network Music Performance V

A.2 Ethics Approval

C. Decision
Please
select

1 Approved X

2 Approved, with minor amendments or further information
required
(See Box D below.)

Amendments to be signed off by Chair of the C-REC

3 To be reconsidered, after major revision
(See Box D below.)

Proposal to be resubmitted again for full committee review once
revision has been completed.

4 Rejected, on the basis that the project raises serious ethical
concerns that have not been adequately addressed in the
design of the research
(See Box D below.)

D. Recommendations (if your decision is 2, 3 or 4 above)

 Minor amendments
 Major revision required (please outline key points)

OR
 Reject proposal for the following reasons

a.
b.
c.
d.
e.
f.
g.

F. Any further comments
Reference
CREC-IEM/2012/04

DATE: 5 August 2012

Ethics Review Feedback Form: C-RECIEM 2

Appendix A. Liveness In Network Music Performance VI

Appendix B

Yig, The Father of Serpents

Appendix B. Yig, The Father of Serpents VIII

B.1 Yig Recording Comparison

Figure B.1: Comparison of recordings from two nodes with identical states.

Sciences and Technology
Cross-Schools Research Ethics Committee

CERTIFICATE OF APPROVAL

Reference Number: ER/CM418/1 [NCCM1012]

Title of Project: Evaluation of Collocated and Distributed Computer Music Systems

Principal Investigator: Nick Collins

Student: Chad McKinney

Collaborators: -

Duration of Approval 5 months

Expiration of Approval: 01 Nov 2012

Expected Start Date:* 31 Mar 2013

This project has been given ethical approval by the Science and Technology
Cluster Research Ethics Committee (C-REC).

*NB. If the actual project start date is delayed beyond 12 months of the expected start date, this
Certificate of Approval will lapse and the project will need to be reviewed again to take account
of changed circumstances such as legislation, sponsor requirements and University procedures.

Please note and follow the requirements for approved submissions:

Amendments to protocol.
 Any changes or amendments to approved protocols must be submitted to the C-
REC for authorisation prior to implementation.

Feedback regarding the status and conduct of approved projects
 Any incidents with ethical implications that occur during the implementation of the
project must be reported immediately to the Chair of the C-REC.

The principal investigator is required to provide a brief annual written statement to the
committee, indicating the status and conduct of the approved project. These reports will be
reviewed at the annual meeting of the committee. A statement by the Principal Investigator to
the C-REC indicating the status and conduct of the approved project will be required on the
following date(s):

December 2012.

Authorised Signature Richard de Visser

Name of Authorised Signatory
(C-REC Chair or nominated deputy)

Richard de Visser

Date 12 Nov 12

Appendix B. Yig, The Father of Serpents IX

B.2 Ethics Approval

Appendix B. Yig, The Father of Serpents X

B.3 User Evaluation Questions

B.3.1 Background

• Nationality

• Gender

• Age

• Please list the instrument(s) you play, with the number of years you have been study-
ing them: How would you describe your experience with computer music, if any
(how many years have you been using computers in music, and what software are
you familiar with)?

• How would you describe your experience with network music, if any?

B.3.2 Evaluation Questionnaire Session 1

• Which system did you use: Yig or Auracle?

• Was your experimental partner in the same room as you?

• With regards to the system you evaluated rate each item 1 – 7 by circling the selected
value for each line. 1 being strongly disagree and 7 being strongly agree.

– It is useful for music collaboration.

– I don’t notice any inconsistencies as I use it.

– It does everything I expect it to.

– It is user friendly.

– It is flexible.

– Using it is effortless.

– I learned to use it quickly.

– I quickly became skillful with it.

– I am satisfied with it.

– It is fun to use.

• With regards to the musical collaboration rate each item 1 – 7 by circling the selected
value for each line. 1 being strongly disagree and 7 being strongly agree.

– I felt involved with the collaboration.

– I enjoyed the collaboration.

– I understood what was going on.

– I felt satisfied with the result.

– I felt out of control.

– The other participant ignored my contributions.

– I felt aware of the other participant.

– Coordination was difficult.

Appendix B. Yig, The Father of Serpents XI

– I would have played longer if given the option.

– If I were performing for an audience just now, I would be satisfied with the
performance.

– The collaboration was gratifying.

B.3.3 Evaluation Questionnaire Session 2

• Which system did you use: Yig or Auracle?

• Was your experimental partner in the same room as you?

• With regards to the system you evaluated rate each item 1 – 7 by circling the selected
value for each line. 1 being strongly disagree and 7 being strongly agree.

– It is useful for music collaboration.

– I don’t notice any inconsistencies as I use it.

– It does everything I expect it to.

– It is user friendly.

– It is flexible.

– Using it is effortless.

– I learned to use it quickly.

– I quickly became skillful with it.

– I am satisfied with it.

– It is fun to use.

• With regards to the musical collaboration rate each item 1 – 7 by circling the selected
value for each line. 1 being strongly disagree and 7 being strongly agree.

– I felt involved with the collaboration.

– I enjoyed the collaboration.

– I understood what was going on.

– I felt satisfied with the result.

– I felt out of control.

– The other participant ignored my contributions.

– I felt aware of the other participant.

– Coordination was difficult.

– I would have played longer if given the option.

– If I were performing for an audience just now, I would be satisfied with the
performance.

– The collaboration was gratifying.

Appendix B. Yig, The Father of Serpents XII

B.3.4 Interview Questions

• Briefly, could you describe your general opinion of the collaboration?

• How do you think the collaboration would have differed if you were in separate
locations or the same location?

• How did the software effect your ability to develop musical ideas?

• How would you compare the anxiety of a normal performance with the anxiety from
the collaboration that just happened?

• Would you be interested in this kind of collaboration in the future? Why or why not?

• Can you describe the most negative aspects of the collaboration?

• Can you describe the most positive aspects of the collaboration?

• Are there any further comments you wish to make?

B.4 Yig And Auracle Evaluation Thematic

Analysis Codes
B.4.1 Auracle – Distributed Codes

• Collaboration difficult

• Source of sounds confusing

• Simple

• Limited

• Small Button Better

• Still don’t know the rules

• Weird that sound muted while record-
ing voice

• Struggled for control

• Not really nervous

• Fun and not nervous

• Maybe nervous

• Maybe weird with an audience

• Further Interest in Network Music

• Initially boring

• Struggled to synchronize

• Unique experience

• Wanted more causality to actions

• Definitely enjoyable

• Hard to listen while getting used to in-
teraction

• Had to get accustomed to relation-
ships with the sound and gesture

• A little challenging, but probably good

• First five minutes just messing around

• Maybe more enjoyable with experi-
ence

• Glued to screen

• Same room would’ve made much dif-
ference

• Worth trying in the same room

• Can communicate visually quicker
when in the same room

• Relieved to be in a different room

• Good to be distributed while getting
used to making sound

Appendix B. Yig, The Father of Serpents XIII

• If facing each other you can laugh at
each other

• Anxiety was different from a perfor-
mance, learning vs attaining

• Didn’t feel anxious

• Liked the map

• Just learning

• Interested in combining with live in-
strumentation

• Definitely interested in future collabo-
ration

• Taking part demystifies

• Communication was the most difficult

• Just trying to listen and copy

• Delay made communication difficult

• Simpler and immediacy quite good

• Auracle didn’t make any sense

• Didn’t realize we were collaborating

• Could see visuals but couldn’t under-
stand

• The input never matched anything I’d
expect from the output

• High pitch sounds actually make some
kind of noise

• hard to collaborate when have no idea
what’s going on

• Easier to hear each other in the same
location

• Hated using voice

• Using our voices together would’ve
sucked but less than being lost when
apart

• Awkward making noise alone, like a
crazy person

• Graphic visualization is far too ab-
stract

• Fun, interested in further collabora-
tion

• Making network music could be more
fun than chatting with friends

• Wanted more channels of communica-
tion in Auracle

• Could give more options for atmo-
sphere

• Actions were less meaningful

• Would not work at all if you were in
the same location

• Lag might make local collaboration
difficult

• Can tell it’s responding but little con-
nection

• Laggy and unpredictable

• It’s disappointing because it doesn’t
correlate

• Bothered me that it broke up long
notes

• Would be better for performance to be
familiar with software

• Vaguely nervous because it involved
vocal performing

• Feels more like a toy than an instru-
ment

• Didn’t know what to do with voice

• Would make a poor performance
medium

• Nervous during networked perfor-
mances

• Not interested in using Auracle in the
future

• Too slow and predictable

• Not too excited to use it again

• Idea isn’t bad, just bad execution

• Worst thing was lack of real-time in-
teraction between performers

• Didn’t feel like there was much input
from the performers

• Some nice moments but further apart
than in Yig

Appendix B. Yig, The Father of Serpents XIV

B.4.2 Auracle – Co-located Codes

• Didn’t know what I was doing

• Would be the same if distributed

• Didn’t sing

• Made strange noises

• Didn’t know what I was doing or to
expect

• Didn’t know what to expect

• Adaptive, but didn’t know how to use

• Clearer than Yig

• Not sure what will come out

• A performance could get nerve wrack-
ing

• Lack of expectation in performance
lessens nervousness

• Fun to use

• Didn’t understand

• Network music is an interesting ideas

• Unsure if I want to do it more

• Most negative is not understanding

• Fun but surprising

• Fun and funny to see what collabora-
tor would do

• Interesting to explore together with-
out talking

• Would’ve been different if we knew
more

• I had no idea what was going on

• Even not knowing was fun

• He knew what was going on more
than me

• Maybe chat used more if in different
locations

• Don’t think would’ve used chat even if
in different locations

• My network band doesn’t use ours

• With an audience it would be different
if we were in different locations

• We could hear our voices but not if
separated

• The only enjoyment was from each
other’s voices, not from patch

• Doesn’t get to developing musical
ideas

• Doesn’t really have an interface

• No anxiety whatsoever

• Wouldn’t like singing on stage at all

• I get terrible stage fright

• I use my voice plenty, wouldn’t like to
use Auracle

• A vocal improviser would just ignore
the system

• A script might help it be more pre-
dictable

• I’ve seen better vocal based systems

• I do network music already, but
slightly different

• Would like to open up my interfaces
to networking

• Would have to let go of pristine con-
trol when networking

• Worst moment when he changed the
chat room

• Worst moment when he started
singing “Will you be my bodyguard?”

• Yig more fun and had more communi-
cation

• I had no idea what was going on

• I’m really uncomfortable with singing

• That was awkward until I figured out
I could make it feed back

Appendix B. Yig, The Father of Serpents XV

• Probably would’ve used my voice
more if distributed because he was
laughing at me

• Being in the same location was pro-
hibitive

• I think it is a composition, it does one
thing

• The only thing that made me anxious
was having to sing

• The only thing that made me anxious
was not knowing the correspondence
of action and sound

• It was fun, felt like playing

• Collaborator was awkward

• Collaborator knew too much

• Sometimes something spontaneously
fun would happen

• I’d probably never say collaborating

• I thought we weren’t collaborating at
all

• Struggled to get past technical aspects

• Recorded each others output

• Found things together

• Hadn’t worked it out

• Quite cool, the repeats and loops you
got

• Probably would’ve used the chat more
if distributed

• Probably would’ve ignored each other
more

• When distributed would’ve collabo-
rated more because of less distraction

• If distributed, would’ve been more iso-
lated

• Co-located reminded me to be collab-
orative

• Quite well labeled but still couldn’t
make connections

• Would like to better understand

• Could make it on the computer better

• Easier to work out what you were do-
ing

• A mute button would help

• Good thing about co-located is we can
talk

• Some nervousness because the inter-
viewer was there

• Crossed my min that “This is crap”

• Not the other user, but the interviewer
made me nervous

• Just some network music in a class

• Really cool to play over the internet

• Interested in seeing someone else do
it

• The technology was barbaric

• I couldn’t understand what was going
on

• Could just do things independently

• Would’ve been good to play by your-
self first

• Learning was a bigger barrier to ex-
periment

• On my own I would’ve gotten bored

• Improvising more fun with someone
inspiring

• Visual contact is important for com-
munication in improvising

• Expertise is important for improvisa-
tion

• Not knowing software is like using a
different instrument

• Couldn’t figure out visual feedback

• Learning software like learning an in-
strument

Appendix B. Yig, The Father of Serpents XVI

B.4.3 Yig – Distributed Codes

• Still don’t know the rules

• Accidently discovered connections

• Wanted more informative interface

• Wanted better synth names

• Wanted to be able to mute

• Deleting seemed rude

• Halfway through began to understand

• Custom names only helpful with more
time

• not really nervous

• Fun and not nervous

• Maybe nervous

• Maybe weird with an audience

• Further interest in network music

• Initially boring

• Unique experience

• Very nice results

• Wanted more causality to actions

• Limited, which is bad and good

• Easier to understand

• Definitely enjoyable

• Hard to listen while getting used to in-
teraction

• Had to get accustomed to relation-
ships with the sound and gesture

• A little challenging, but probably good

• First five minutes just messing around

• Maybe more enjoyable with experi-
ence

• Glued to screen

• Same room wouldn’t have made much
difference

• Worth trying in the same room

• Can communicate visually quicker
when in the same room

• Relieved to be in a different room

• Good to be distributed while getting
used to making sound

• If facing each other you can laugh at
each other

• You could just try different things

• Could have been crazier but didn’t
know how to use it

• I hoped that turning an arrow would
be more dramatic

• Seeing what the other person was do-
ing worked really well

• Anxiety was different from a perfor-
mance, learning vs attaining

• Didn’t feel anxious

• Just learning

• Interested in combining with live in-
strumentation

• Definitely interested in future collabo-
ration

• Taking part demystifies

• Communication was the most difficult

• Just trying to listen and copy

• Most positive when discovered how to
connect synths

• Easier to get started

• Build off ideas really really really easy

• Don’t need instrumental knowledge

• Figure out which combinations make
different sounds

• Visuals were super easy to understand

• Can see the network working, can see
the vibrations

Appendix B. Yig, The Father of Serpents XVII

• Felt better than previous musical per-
formances

• More experimental, actually enjoyable

• I used to play hard core and hated be-
ing expected to emote

• Here you can sit down and focus

• Connecting causes strange surprises

• There was a learning curve

• Everything was easy to figure out ex-
cept for deleting

• Fun, interested in further collabora-
tion

• Making network music could be more
fun than chatting with friends

• Most negative when all sounds were
deleted

• Most negative when I couldn’t get rid
of a rhythmic sound

• With more time would’ve used chat
more

• Didn’t need more channels of commu-
nication

• Too busy to type “Hey, let’s do this”

• Could give more options for atmo-
sphere

• I wanted to make it higher, a happy
place

• Really, really enjoyable

• We made something that was cool and
you could enjoy it

• Felt happy with it but recreational too

• We’re both running places and work-
ing to make a sound

• It was fun, musically, mechanically

• You could actually see what was going
on

• No difference, except maybe text chat
instead of talking

• The difficulty is familiarity with the
synths

• Some synths didn’t make sound, un-
sure why

• Would be better for performance to be
familiar with software

• A visual medium may be helpful in im-
provised settings

• It was pretty easy to pick up

• Nervous during networked perfor-
mances

• Interested in further collaboration us-
ing it

• Was fun

• Interested to be more familiar with it

• Worst thing was lack of real-time in-
teraction between performers

• Yig crashed in the middle

• Liked the discovery of sound based on
name

• Sometimes got lost

• Couldn’t delete synths

• Having the score synchronized would
be easier

B.4.4 Yig – Co-located Codes

• Good Fun

• Intuitive Collaboration

• Want to try with more people

• Didn’t know what I was doing

• Would be the same if distributed

• Didn’t know what to expect

Appendix B. Yig, The Father of Serpents XVIII

• Adaptive, but didn’t know how to use

• Unclear connection to actions

• Dragging loads of stuff

• Easier than Auracle

• Easier to manipulate

• More musical than Auracle

• A performance could get nerve wrack-
ing

• Noisiness makes ideas come easy

• Lack of expectation in performance
lessens nervousness

• Fun to use

• Didn’t understand

• Network music is an interesting ideas

• Unsure if I want to do it more

• Most negative is not understanding

• Fun but surprising

• Complicated without experience

• Didn’t realize why I should connect
multiple synths

• Fun and funny to see what collabora-
tor would do

• Interesting to explore together with-
out talking

• Like the output of sounds

• Would’ve been different if we knew
more

• Second time using Yig, informed some
decisions

• I had no idea what was going on

• Even not knowing was fun

• He knew what was going on more
than me

• Just luck

• Different locations wouldn’t have
been different

• Maybe chat used more if in different
locations

• Don’t think would’ve used chat even if
in different locations

• My network band doesn’t use our chat

• With an audience it would be different
if we were in different locations

• We could hear our voices but not if
separated

• Feel like a rate in a maze

• More of a piece than an instrument

• Needs more transparent names for
general use as a tool

• The names are beautifully poetic and
amusing

• Prevented from being a tool

• Synths would jump to the side

• Some synths wouldn’t select

• Crashed, if in front of an audience, a
show stopper

• No anxiety whatsoever

• I do network music already, but
slightly different

• Copies ReacTable and it’s cool

• Would like to open up my interfaces
to networking

• Would have to let go of pristine con-
trol when networking

• Worst moment when he changed the
chat room

• Worst moment when he started
singing “Will you be my bodyguard?”

• Yig more fun and had more communi-
cation

• We weren’t fighting over where things
should go

• I had no idea what was going on

Appendix B. Yig, The Father of Serpents XIX

• I knew exactly what to do, so I tried
stuff I’d never done before

• I don’t think being in different places
would have made any difference

• I do think (co-location) makes a dif-
ference, but not much

• It gave me more ideas, opened more
possibilities

• Didn’t know whether it was supposed
to not be responding

• No idea what to expect, but I guess
that would be the software

• The only thing that made me anxious
was not knowing the correspondence
of action and sound

• It was fun, felt like playing

• Collaborator was awkward

• Collaborator knew too much

• There shouldn’t be synths that don’t
make sound

• Not knowing if it was the software
or me not doing something right was
puzzling

• Sometimes something spontaneously
fun would happen

• Things don’t necessarily do what you
want, that’s the best part

• I’d probably never say collaborating

• I thought we weren’t collaborating at
all

• It was more fun trying to stop you
from doing anything

• Struggled to get past technical aspects

• Accidental discovery during mutual
movement

• A solo synth function would’ve been
useful

• Keeping it simple would help

• A mute button would help

• Good thing about co-located is we can
talk

• Some nervousness because the inter-
viewer was there

• Crossed my mind that “This is crap”

• Not the other user, but the interviewer
made me nervous

• Just some network music in a class

• Really cool to play over the internet

• Interested in seeing someone else do
it

• The technology was barbaric

• I couldn’t understand what was going
on

• Could just do things independently

• Would’ve been good to play by your-
self first

• Learning was a bigger barrier to ex-
periment

• On my own I would’ve gotten bored

• Improvising more fun with someone
inspiring

• Visual contact is important for com-
munication in improvising

• Expertise is important for improvisa-
tion

• Not knowing software is like using a
different instrument

• Found synth connections by acciden-
tal colliding

• Screens not a barrier

• Nice visual feed back

• Learning software like learning an in-
strument

• Exploratory aspect quite fun

Appendix B. Yig, The Father of Serpents XX

B.5 Yig And Auracle Evaluation Likert Items

Appendix B. Yig, The Father of Serpents XXI

3
1
%

1
9
%

4
4
%

6
%

1
2
%

1
9
%

4
4
%

1
2
%

2
5
%

3
8
%

3
8
%

6
%

6
%

6
%

1
9
%

3
1
%

3
8
%

6
%

1
2
%

5
0
%

3
8
%

3
8
%

8
1
%

5
0
%

8
8
%

8
1
%

8
1
%

4
4
%

7
5
%

6
9
%

4
4
%

3
1
%

6
9
%

9
4
%

7
5
%

6
9
%

6
9
%

5
6
%

8
8
%

8
1
%

2
5
%

6
2
%

3
1
%

0
%

6
%

6
%

6
%

0
%

1
2
%

1
2
%

6
%

1
9
%

3
1
%

2
5
%

0
%

1
9
%

1
2
%

0
%

6
%

6
%

6
%

2
5
%

0
%

re
sp

o
n

se

T
h

e
 c

o
ll

a
b

o
ra

ti
o
n

 w
a
s

g
ra

ti
fy

in
g

.
I

w
o
u

ld
 b

e
 s

a
ti

sf
ie

d
 w

it
h

 t
h

e
 p

e
rf

o
rm

a
n

ce
.

I
w

o
u

ld
 h

a
ve

 p
la

ye
d

 l
o
n

g
e
r

if
 g

iv
e
n

 t
h

e
 o

p
ti

o
n

.
C

o
o
rd

in
a
ti

o
n

 w
a
s

d
if

fi
cu

lt
.

I
fe

lt
 a

w
a
re

 o
f

th
e
 o

th
e
r

p
a
rt

ic
ip

a
n

t.
T

h
e
 o

th
e
r

p
a
rt

ic
ip

a
n

t
ig

n
o
re

d
 m

y
co

n
tr

ib
u

ti
o
n

s.
I

fe
lt

 o
u

t
o
f

co
n

tr
o
l.

I
fe

lt
 s

a
ti

sf
ie

d
 w

it
h

 t
h

e
 r

e
su

lt
.

I
u

n
d

e
rs

to
o
d

 w
h

a
t

w
a
s

g
o
in

g
 o

n
.

I
e
n

jo
ye

d
 t

h
e
 c

o
ll

a
b

o
ra

ti
o
n

.
I

fe
lt

 i
n

vo
lv

e
d

 w
it

h
 t

h
e
 c

o
ll

a
b

o
ra

ti
o
n

.
It

 i
s

fu
n

 t
o
 u

se
.

I
a
m

 s
a
ti

sf
ie

d
 w

it
h

 i
t.

I
q

u
ic

k
ly

 b
e
ca

m
e
 s

k
il

lf
u

l
w

it
h

 i
t.

I
le

a
rn

e
d

 t
o
 u

se
 i

t
q

u
ic

k
ly

.
U

si
n

g
 i

t
is

 e
ff

o
rt

le
ss

.
It

 i
s

fl
e
xi

b
le

.
It

 i
s

u
se

r
fr

ie
n

d
ly

.
It

 d
o
e
s

e
ve

ry
th

in
g

 I
 e

xp
e
ct

 i
t

to
.

I
d

o
n

't
 n

o
ti

ce
 a

n
y

in
co

n
si

st
e
n

ci
e
s

a
s

I
u

se
 i

t.
It

 i
s

u
se

fu
l

fo
r

m
u

si
c

co
ll

a
b

o
ra

ti
o
n

.

1
0

0
5

0
0

5
0

1
0

0

P
e
rc

e
n

ta
g

e

R
e
sp

o
n

se
1

2
3

4
5

6
7

Y
ig

 L
ik

e
rt

 I
te

m
s

Figure B.2: Yig Likert Items.

Appendix B. Yig, The Father of Serpents XXII

6
%

7
5
%

4
4
%

3
1
%

3
1
%

5
6
%

2
5
%

8
8
%

3
1
%

5
6
%

6
2
%

7
5
%

5
0
%

5
6
%

3
1
%

5
6
%

8
8
%

7
5
%

7
5
%

3
8
%

4
4
%

9
4
%

1
9
%

3
1
%

3
8
%

6
2
%

1
9
%

4
4
%

1
2
%

6
2
%

1
9
%

2
5
%

1
9
%

3
8
%

2
5
%

5
6
%

2
5
%

6
%2
5
%

2
5
%

3
1
%

4
4
%

0
%

6
%

2
5
%

3
1
%

6
%

2
5
%

3
1
%

0
%

6
%

2
5
%

1
2
%

6
%

1
2
%

1
9
%

1
2
%

1
9
%

6
%

0
%

0
%

3
1
%

1
2
%

re
sp

o
n

se

T
h

e
 c

o
ll

a
b

o
ra

ti
o
n

 w
a
s

g
ra

ti
fy

in
g

.
I

w
o
u

ld
 b

e
 s

a
ti

sf
ie

d
 w

it
h

 t
h

e
 p

e
rf

o
rm

a
n

ce
.

I
w

o
u

ld
 h

a
ve

 p
la

ye
d

 l
o
n

g
e
r

if
 g

iv
e
n

 t
h

e
 o

p
ti

o
n

.
C

o
o
rd

in
a
ti

o
n

 w
a
s

d
if

fi
cu

lt
.

I
fe

lt
 a

w
a
re

 o
f

th
e
 o

th
e
r

p
a
rt

ic
ip

a
n

t.
T

h
e
 o

th
e
r

p
a
rt

ic
ip

a
n

t
ig

n
o
re

d
 m

y
co

n
tr

ib
u

ti
o
n

s.
I

fe
lt

 o
u

t
o
f

co
n

tr
o
l.

I
fe

lt
 s

a
ti

sf
ie

d
 w

it
h

 t
h

e
 r

e
su

lt
.

I
u

n
d

e
rs

to
o
d

 w
h

a
t

w
a
s

g
o
in

g
 o

n
.

I
e
n

jo
ye

d
 t

h
e
 c

o
ll

a
b

o
ra

ti
o
n

.
I

fe
lt

 i
n

vo
lv

e
d

 w
it

h
 t

h
e
 c

o
ll

a
b

o
ra

ti
o
n

.
It

 i
s

fu
n

 t
o
 u

se
.

I
a
m

 s
a
ti

sf
ie

d
 w

it
h

 i
t.

I
q

u
ic

k
ly

 b
e
ca

m
e
 s

k
il

lf
u

l
w

it
h

 i
t.

I
le

a
rn

e
d

 t
o
 u

se
 i

t
q

u
ic

k
ly

.
U

si
n

g
 i

t
is

 e
ff

o
rt

le
ss

.
It

 i
s

fl
e
xi

b
le

.
It

 i
s

u
se

r
fr

ie
n

d
ly

.
It

 d
o
e
s

e
ve

ry
th

in
g

 I
 e

xp
e
ct

 i
t

to
.

I
d

o
n

't
 n

o
ti

ce
 a

n
y

in
co

n
si

st
e
n

ci
e
s

a
s

I
u

se
 i

t.
It

 i
s

u
se

fu
l

fo
r

m
u

si
c

co
ll

a
b

o
ra

ti
o
n

.

1
0

0
5

0
0

5
0

1
0

0

P
e
rc

e
n

ta
g

e

R
e
sp

o
n

se
1

2
3

4
5

6
7

A
u

ra
cl

e
 L

ik
e
rt

 I
te

m
s

Figure B.3: Auracle Likert Items.

Appendix B. Yig, The Father of Serpents XXIII

1
2
%

5
6
%

6
2
%

2
5
%

3
1
%

5
6
%

3
8
%

5
6
%

3
8
%

7
5
%

6
2
%

4
4
%

3
1
%

3
8
%

2
5
%

5
6
%

6
2
%

5
0
%

5
6
%

4
4
%

5
0
%

6
2
%

3
8
%

2
5
%

5
6
%

5
6
%

3
8
%

3
8
%

3
8
%

5
6
%

1
9
%

1
2
%

3
8
%

5
6
%

5
0
%

5
6
%

3
8
%

3
1
%

4
4
%

3
8
%

2
5
%

4
4
%

2
5
%

6
%

1
2
%

1
9
%

1
2
%

6
%

2
5
%

6
%

6
%

6
%

2
5
%

1
9
%

1
2
%

1
2
%

1
9
%

6
%

6
%

6
%

6
%

3
1
%

6
%

re
sp

o
n

se

T
h

e
 c

o
ll

a
b

o
ra

ti
o
n

 w
a
s

g
ra

ti
fy

in
g

.
I

w
o
u

ld
 b

e
 s

a
ti

sf
ie

d
 w

it
h

 t
h

e
 p

e
rf

o
rm

a
n

ce
.

I
w

o
u

ld
 h

a
ve

 p
la

ye
d

 l
o
n

g
e
r

if
 g

iv
e
n

 t
h

e
 o

p
ti

o
n

.
C

o
o
rd

in
a
ti

o
n

 w
a
s

d
if

fi
cu

lt
.

I
fe

lt
 a

w
a
re

 o
f

th
e
 o

th
e
r

p
a
rt

ic
ip

a
n

t.
T

h
e
 o

th
e
r

p
a
rt

ic
ip

a
n

t
ig

n
o
re

d
 m

y
co

n
tr

ib
u

ti
o
n

s.
I

fe
lt

 o
u

t
o
f

co
n

tr
o
l.

I
fe

lt
 s

a
ti

sf
ie

d
 w

it
h

 t
h

e
 r

e
su

lt
.

I
u

n
d

e
rs

to
o
d

 w
h

a
t

w
a
s

g
o
in

g
 o

n
.

I
e
n

jo
ye

d
 t

h
e
 c

o
ll

a
b

o
ra

ti
o
n

.
I

fe
lt

 i
n

vo
lv

e
d

 w
it

h
 t

h
e
 c

o
ll

a
b

o
ra

ti
o
n

.
It

 i
s

fu
n

 t
o
 u

se
.

I
a
m

 s
a
ti

sf
ie

d
 w

it
h

 i
t.

I
q

u
ic

k
ly

 b
e
ca

m
e
 s

k
il

lf
u

l
w

it
h

 i
t.

I
le

a
rn

e
d

 t
o
 u

se
 i

t
q

u
ic

k
ly

.
U

si
n

g
 i

t
is

 e
ff

o
rt

le
ss

.
It

 i
s

fl
e
xi

b
le

.
It

 i
s

u
se

r
fr

ie
n

d
ly

.
It

 d
o
e
s

e
ve

ry
th

in
g

 I
 e

xp
e
ct

 i
t

to
.

I
d

o
n

't
 n

o
ti

ce
 a

n
y

in
co

n
si

st
e
n

ci
e
s

a
s

I
u

se
 i

t.
It

 i
s

u
se

fu
l

fo
r

m
u

si
c

co
ll

a
b

o
ra

ti
o
n

.

1
0

0
5

0
0

5
0

1
0

0

P
e
rc

e
n

ta
g

e

R
e
sp

o
n

se
1

2
3

4
5

6
7

C
o
−

lo
ca

te
d

 L
ik

e
rt

 I
te

m
s

Figure B.4: Co-Located Likert Items.

Appendix B. Yig, The Father of Serpents XXIV

2
5
%

3
8
%

2
5
%

1
2
%

1
2
%

1
9
%

3
1
%

4
4
%

1
9
%

1
9
%

3
8
%

3
8
%

2
5
%

2
5
%

2
5
%

3
1
%

6
2
%

3
1
%

3
1
%

4
4
%

3
1
%

6
9
%

6
2
%

5
6
%

6
9
%

8
8
%

6
2
%

5
0
%

5
0
%

7
5
%

4
4
%

4
4
%

5
0
%

7
5
%

5
0
%

6
9
%

5
6
%

3
1
%

6
9
%

6
9
%

3
1
%

6
2
%

6
%

0
%

1
9
%

1
9
%

0
%

1
9
%

1
9
%

6
%

6
%

3
8
%

1
9
%

1
2
%

0
%

2
5
%

6
%

1
2
%

6
%

0
%

0
%

2
5
%

6
%

re
sp

o
n

se

T
h

e
 c

o
ll

a
b

o
ra

ti
o
n

 w
a
s

g
ra

ti
fy

in
g

.
I

w
o
u

ld
 b

e
 s

a
ti

sf
ie

d
 w

it
h

 t
h

e
 p

e
rf

o
rm

a
n

ce
.

I
w

o
u

ld
 h

a
ve

 p
la

ye
d

 l
o
n

g
e
r

if
 g

iv
e
n

 t
h

e
 o

p
ti

o
n

.
C

o
o
rd

in
a
ti

o
n

 w
a
s

d
if

fi
cu

lt
.

I
fe

lt
 a

w
a
re

 o
f

th
e
 o

th
e
r

p
a
rt

ic
ip

a
n

t.
T

h
e
 o

th
e
r

p
a
rt

ic
ip

a
n

t
ig

n
o
re

d
 m

y
co

n
tr

ib
u

ti
o
n

s.
I

fe
lt

 o
u

t
o
f

co
n

tr
o
l.

I
fe

lt
 s

a
ti

sf
ie

d
 w

it
h

 t
h

e
 r

e
su

lt
.

I
u

n
d

e
rs

to
o
d

 w
h

a
t

w
a
s

g
o
in

g
 o

n
.

I
e
n

jo
ye

d
 t

h
e
 c

o
ll

a
b

o
ra

ti
o
n

.
I

fe
lt

 i
n

vo
lv

e
d

 w
it

h
 t

h
e
 c

o
ll

a
b

o
ra

ti
o
n

.
It

 i
s

fu
n

 t
o
 u

se
.

I
a
m

 s
a
ti

sf
ie

d
 w

it
h

 i
t.

I
q

u
ic

k
ly

 b
e
ca

m
e
 s

k
il

lf
u

l
w

it
h

 i
t.

I
le

a
rn

e
d

 t
o
 u

se
 i

t
q

u
ic

k
ly

.
U

si
n

g
 i

t
is

 e
ff

o
rt

le
ss

.
It

 i
s

fl
e
xi

b
le

.
It

 i
s

u
se

r
fr

ie
n

d
ly

.
It

 d
o
e
s

e
ve

ry
th

in
g

 I
 e

xp
e
ct

 i
t

to
.

I
d

o
n

't
 n

o
ti

ce
 a

n
y

in
co

n
si

st
e
n

ci
e
s

a
s

I
u

se
 i

t.
It

 i
s

u
se

fu
l

fo
r

m
u

si
c

co
ll

a
b

o
ra

ti
o
n

.

1
0

0
5

0
0

5
0

1
0

0

P
e
rc

e
n

ta
g

e

R
e
sp

o
n

se
1

2
3

4
5

6
7

D
is

tr
ib

u
te

d
 L

ik
e
rt

 I
te

m
s

Figure B.5: Distributed Likert Items.

Appendix B. Yig, The Father of Serpents XXV

SynthDef.new("StutterSplice",{

| amp=0.1, feedAmp=1,paramOne =0.5, paramTwo =0.5,

audioIn =24,modIn=24, audioOut =20,gate=1 |

var signal , env , directOut , feedOut ,freq ,freqMod , audioInput , modInput;

var onsetFFT , trigEnv , trig , fft , fft2 , fft3 , delay , sil;

env = EnvGen.ar(Env.asr(Rand (0.1,5),1,0.1,-4), gate : gate ,doneAction : 2);

audioInput = InFeedback.ar(audioIn) * env;

modInput = InFeedback.ar(modIn) * env;

paramOne = Lag.kr(paramOne);

paramTwo = Lag.kr(paramTwo);

trig = HPZ2.kr(paramOne + paramTwo);

onsetFFT = FFT(LocalBuf (1024) , audioInput);

trig = Onsets.kr(onsetFFT , 0.1);

trigEnv = EnvGen.ar(Env.asr(0.001,1,0.5,-4), gate : trig ,doneAction : 0);

signal = trigEnv * (audioInput + modInput) * 3;

delay = BufDelayC.ar(

LocalBuf(SampleRate.ir * 3, 3),

signal ,

[

Lag.kr(6.5 / paramOne.linlin(0, 1, 1, 16). round(1), 1),

Lag.kr(6.5 / paramTwo.linlin(0, 1, 1, 16). round(1), 1),

6.5 / 16

] .reciprocal);

fft = FFT(LocalBuf (2048) , delay [0]);

fft = PV_MagFreeze(

fft ,

Decay.kr(DelayC.kr(CoinGate.kr(0.1, trig),paramOne /5)));

fft = PV_BrickWall(fft , LFNoise1.ar(1, 0.5) + (paramOne - 0.5));

fft = IFFT(fft);

fft2 = FFT(LocalBuf (2048) , delay [1]);

fft2 = PV_MagFreeze(

fft2 ,

Decay.kr(DelayC.kr(CoinGate.kr(0.1, trig),paramTwo /5) ,0.2));

fft2 = PV_BrickWall(fft2 , LFNoise1.ar(1, 0.5) + (paramTwo - 0.5));

fft2 = IFFT(fft2);

fft3 = FFT(LocalBuf (2048) , delay [2]);

fft3 = PV_MagFreeze(

fft3 ,

Decay.kr(

DelayC.kr(CoinGate.kr(0.1, trig),LFNoise1.kr(3.25 ,0.5 ,0.5)) ,

1));

fft3 = PV_BrickWall(fft3 , 0.5);

fft3 = IFFT(fft3);

signal = LeakDC.ar(fft+fft2+(fft3 * 2) * 4);

signal = Limiter.ar(signal);

sil = Silence.ar;

signal = Select.ar(CheckBadValues.ar(signal), [signal ,sil ,sil ,sil]);

Out.ar(0, [signal , signal] *amp*env);

Out.ar(audioOut ,signal*feedAmp*env);

});

Figure B.6: One of the synths used in Yig performances

Appendix C

An Interactive 3D Networked
Music Space

Appendix C. An Interactive 3D Networked Music Space XXVII

C.1 User Evaluation Questions

I Rate the following statements with a number 1 through 7 according to how strongly
you agree with them. 1 being strongly disagree and 7 being strongly agree.

• Shoggoth is useful for music collaboration

• I quickly became skillful with Shoggoth

• It was difficult to communicate and collaborate

• The 3D graphics interface implementation was useful

• I will use Shoggoth in a future performance

II How did the 3D graphics interface effect your ability to develop musical ideas?

III How did the 3D graphics interface effect your ability to communicate and collaborate?

IV Can you describe the most negative aspects of your experience with Shoggoth?

V Can you describe the most positive aspects of your experience with Shoggoth?

VI Are there any further comments you wish to make?

Appendix D

Quick Live Coding Collaboration
in the Browser

Appendix D. Quick Live Coding Collaboration in the Browser XXIX

D.1 User Evaluation Numbered Responses
Users were asked to rate the following statements with a number 1 through 7 according to

how strongly they agree with them. 1 being strongly disagree and 7 being strongly agree.

I Lich.js is useful for music collaboration

(a) 5

(b) 5

(c) 7

(d) 1

(e) 7

(f) 4

(g) 4

(h) 6

(i) 1

(j) 7

(k) 6

(l) 6

(m) 5

(n) 3

(o) 5

(p) 5

(q) 7

II I quickly became skillful with Lich.js

(a) 4

(b) 3

(c) 3

(d) 3

(e) 6

(f) 5

(g) 6

(h) 5

(i) 1

(j) 7

(k) 5

(l) 4

(m) 3

(n) 3

(o) 3

(p) 5

(q) 5

III It was difficult to communicate and collaborate

(a) 4

(b) 1

(c) 4

(d) 7

(e) 4

(f) 7

(g) 4

(h) 2

(i) 7

(j) 4

(k) 4

(l) 2

(m) 1

(n) 5

(o) 2

(p) 2

(q) 2

IV The browser based implementation is useful

Appendix D. Quick Live Coding Collaboration in the Browser XXX

(a) 6

(b) 6

(c) 7

(d) 7

(e) 6

(f) 5

(g) 6

(h) 7

(i) 7

(j) 7

(k) 7

(l) 6

(m) 6

(n) 6

(o) 7

(p) 5

(q) 7

V I will use Lich.js in a future project

(a) 7

(b) 5

(c) 5

(d) 4

(e) 4

(f) 1

(g) 2

(h) 7

(i) 6

(j) 6

(k) 5

(l) 7

(m) 2

(n) 7

(o) 5

(p) 5

(q) 2

D.2 User Evaluation Questionnaire Responses
I How did the language effect your ability to develop musical ideas?

(a) The syntax is very intuitive, and i can write musical ideas with a few lines of code.

(b) I’m an old database warhorse (retired). Lich looks very intriguing as a non-lazy
(fast) functional programming implementation of Haskell. However since I don’t
(yet) do FP haven’t really settled into working with declarative patterns, I can’t
say. Monads are really going to be of major utility here that’s not for a first Lich
101 course. Right now I’m prototyping music ideas w/ a spreadsheet, getting the
algorithms right.

(c) Pattern sequencing was easy and fun. I have no Haskell experience, so syntax was
somewhat of a stumbling block, but not too bad...

(d) The processing of patterns is clearly key for development of musical ideas, but I
didn’t get time to get into this very well - things suddenly get a lot more complex.
I’d suggest adding some examples of “musical ideas” using patterns earlier, before
the long series of mathematical demonstrations.

(e) The language features syntax and ugen that are similar to pre-existing systems,
however, the framework allows much faster implementation of ideas.

(f) If ever feel like toying with music I now know a tool that I could use

(g) The language was natural and easy, and the API seems built to handle both simple
and advanced music.

Appendix D. Quick Live Coding Collaboration in the Browser XXXI

(h) So far due to my limited exposure of it no wild musical ideas came to me except it
would be a fantastic way to do some procedural melodies in a game I am thinking
about and it would work perfect for the sound effects. Combine that with needing
no pre–generated files to send across the line and thats amazing. Now that I typed
that more and more ideas are flooding in.

(i) I couldn’t really understand it. I don’t know Haskell, and I couldn’t understand
how functions were being created and applied.

(j) It really helps that I am fluent in SC thinking this might be a little difficult for an
unfamiliar user.

(k) The language is quite extensive and allowed me to easilt express my musical ideas.
I’ve worked with MaxMSP on the PC and lich.js provides functionality for me to
do a lot of what I’m able to do in MaxMSP, in the browser itself (with a little effort
that is)

(l) This is difficult to answer because i am a SuperColldier user, so the language was
very familiar to me. I can say it was easy to develop musical ideas, I like the
scaleList

(m)

(n) I see potential. I want to devote more time to learn this.

(o) I am a developer but I suck at functional programming. It’s cool but the learning
curve is super steep.

(p) prepare a page with all the music is a new way of thinking for me, I’m used to
wave sequencers

(q) it made me feel capable of having rhythm and tune up the notes

II If you used the graphics functionality, how did the language effect your ability to
develop visual ideas?

(a) The graphics functionality didn’t run in my computer.

(b) n/a

(c) I have nothing intelligent to say on this.

(d) Didn’t get to try these, although I tried - perhaps some server crash?

(e) The ability to utilize the pattern streaming system with the graphics was incredibly
intuitive and useful.

(f) Didn’t use it. Probably want to mark this as optional.

(g) It was good until it set the background to a color that made the text hard to
read :) And I didn’t quite understand the purpose of the graphics, were they only
to help produce music (then they’d be discarded)? Or is the goal to produce a
graphics and music composition, say for a game? The latter would be better than
the former IMO, though game creation is a lot more complex. Sorry if this was
covered but there was a lot of text to read.

(h) This part is fantastic and now thinking back to the last question for the musical
ideas it would, if thought out carefully make a wonderful way for me to show
the students I have each year and my team on how to rapidly sketch out an idea
in a matter of minutes. Of course there are dozens of pieces of software that do
this but quite a bit of the things we do revolve around making solutions for people
using the boundaries of the web browser, this suddenly becomes a wonderful tool.

(i) Never got that far.

Appendix D. Quick Live Coding Collaboration in the Browser XXXII

(j) Sorry, didn’t go there yet ... not usually my thing

(k) Did not use the graphics functionality.

(l) Still not

(m) did not use

(n) I didn’t work with graphics functionality.

(o) Hard to think about to use the FX with your music when learning

(p) interesting, though I prefer fullscreen shaders instead of using cubes and sphere,
but that’s interesting

(q) not bad

III Can you describe the most negative aspects of your experience?

(a) I couldn’t make it work the graphics functionality.

(b) Please break the sample down into multiple, smaller samples. It’s too much to
digest as a wall of text. :)

(c) Having multiple people playing around trying to figure everything out while I was
trying to figure things out is a little frustrating. It might be nice if there was a way
to mute the other people on the server during experimentation... a solo Lich I
suppose.

(d) Lost all state and ability to experiment once another user joined. No response to
chat, so not sure if they were aware of me. The split window was confusing, and
seemed a bit unstable - whole screen refreshed unpredictably, and I couldn’t tell
where my edit point was for a while.

(e) The initial colour and font selection was hard to read initially without asking
chrome to zoom in further.

(f) As a vim user I dislike the fact that the editor is always in insert mode.

(g) It was a little long. I understand that there’s a lot to cover, but as an elevator pitch
it could use a little slimming down. Don’t be afraid to skip intermediate steps; it
felt more like a tutorial than a demo.

(h) When I had to stop and berate myself for realizing why CTRL-. was doing nothing,
I am on a Mac!

(i) I couldn’t figure out what was going on.

(j) The general problem with live coding is being sort of locked in with the speed of
interaction and just the beat based lockstep thing rules out getting “atmospheric”
or post-cagean ;-) I am not sure how you would pass interactions between collab-
orators, but I guess once you know the function names that might be possible, but
not exactly obvious

(k) N/A

(l) The confusion between use coma (,) or not. The ctrl + point when I was jam-
min with others was difficult to listen again the partners code. It is difficult to
undesrstand how produces wich sound. When you change to other window.

(m) I wish I could use functionality of javascript. and just have string commands/-
javascript commands to the lich.js interface.

(n) mouseX, I couldn’t figure out how to use.

(o) Not sucking at learning functional programming

(p) no OSC support, no fft analysis

Appendix D. Quick Live Coding Collaboration in the Browser XXXIII

(q) I prefer much more music thing than the visual, and i would like to record

IV Can you describe the most positive aspects of your experience?

(a) I enjoyed writing so easily patterns and chords.

(b) IT’S VERY COOL. Lich.js’s dev cycle is just getting underway, playing with it
real–time on a website leaves a good strong 1st impression It opened up a door
I thought was closed in web dev, which is using a FP language to work with
complex models on the web browser. And yes, I *hate* Java I’ve seen people
bleed serotonin over Javascript callbacks other issues.

(c) All the options for sequencing are really inspiring. And I can see how the collabo-
rative aspect would be fun when working with people who knew what they were
doing :)

(d) Great to work in browser - easy startup, and sample exercises start well

(e) The speed at which you could implement complex synthesis and patterns was a
joy. The fact that this can be done both alongside graphical developments and
others is excellent.

(f) When editing and playing a sequence it seems to update on the next cycle instead
of abruptly resetting or even worse - looping over.

(g) The implementation was functionally flawless and creatively impressive, and I can
tell that a lot of hard work has been put into it.

(h) Everything besides my moment of stupidity.

(i) There was somebody else on at the same time, and it was kind of cool when our
sounds meshed well. Happened. Sometimes.

(j) I got results immediately and really appreciated the ugen and list dumps. Like
any good musical instrument or context it was quickly apparent that with practice
the results would become more finely tuned and personal

(k) Most of my experience was positive. Lich.js is easy to use and has a lot of features
which allowed me to program music. The demo was also very well made

(l) Definitely the possibility to interact with others through a browser. The chat is
very nice, the sync is very precise. That you have not the possibility to save the
code.

(m) Ease of setting up progression.

(n) Really fun stuff.

(o) hearing sound within 5 seconds of doing commands in the demo. Super cool

(p) motivates me to jump into live coding audio-visuals

(q) creating a sequencer and being able to record would do the trick for a great music
compositor

V Are there any further comments you wish to make?

(a) Is a great language.

(b) 1) I didn’t want to answer “It was difficult to communicate and collaborate.” b/c
I never tried that feature. 2) I’ve been impressed by what FP/Haskell brings to
the table in terms of prototyping concision in app development. I’m looking at
building a collaborative computer-assisted composition application, one along
the lines of “Hyperscore”, definitely geared toward pedagogy therapeutic goals.
So what has been developed here could be nothing short of VERY VERY important.

Appendix D. Quick Live Coding Collaboration in the Browser XXXIV

(c) This is fun! It might be nice to have some higher-level synths included. After I
send a chat message, it takes me back to the code editor, but there are lots of
times I want to send more than one message and then I find myself suddenly
typing msgs into the code editor.
More info/examples of the various audio effects would be nice in the tutorial.
I admit to feeling slightly uncomfortable experimenting with them while other
people are also using the system... I don’t want to accidentally blow anybody’s
ears out.
The GUI had occasional minor problems with scrolling. I’m curious to see how it
scales to having more than two people using it at once... do you eventually get
to the point where each person can only see a couple of lines at a time? Hmmm.
Not sure if this better than simply using a single shared editor, but it is really nice
to see all the scrolling and highlighting that others are doing. On that note, it
would be nice if executed code was flashed to help provide further awareness of
collaborator activity.

(d) keep it up - great start!

(e) This is a very very promising project and I hope to see it being used by the com-
munity!

(f) Voice communication (with Push-to-Talk support and preferably the default op-
tion) might be preferred over text chat.

(g) I’m not sure I experienced anything that could be used to collaborate, other than
the chat functionality. Is there an ability to stream your music or graphics to
another user? And/or can you share edit code in real–time?

(h) How much work will go into this lich.js? Will there be room for others to add
expansions for adding extensions? Like working with different inputs? I can go
all day in this box :)

(i) People don’t pick up programming as quickly as you think. I’m pretty experienced
(35 years, +20 years PhD in CS), and I really couldn’t figure out what was going
on from the comments and examples.

(j) There is some huge potential here. Another developer and I are working on doing
JavaScript in the browser which we thought this might be doing, but clearly this
is on the server side which makes sense. I am assuming you are serving SC on that
side. This is a spectacular set of ideas that will take more practice and focus to
improve, but I really enjoyed my brief stint and will be showing it to my students.
I am reminded of GIBBER which I am sure you are aware of.

(k) The only thing which I felt was lacking in lich.js is that there should be a way to
just play lich.js code files directly. That way I could play a lich.js code file on a
javascript event.

(l) Very nice system, I really like it.

(m)

(n) I want to try collaboration in the future. I didn’t communicate with anyone while
trying Lich.js.

(o) SUPER NEAT project. I do audio hacking and PureData performances using a
NodeJS Websocket/OSP gateway. I am trying to figure out how to use Lich.js with
my stuff. I forked the Lich.js project (aphexddb/Lich.js) so can tweak the ports
and whatnot.

(p) this is after 20 mn using lich.js, subject to evolve

(q) I would love to learn making music in this kind of way

Appendix D. Quick Live Coding Collaboration in the Browser XXXV

D.3 Lich.js Thematic Analysis Codes

• Syntax is intuitive

• Few lines of code

• Intriguing

• Functional Programming still new

• Still prototyping musical ideas

• Patterns are easy

• No Haskell experience

• Syntax is confusing

• Patterns are key

• Suddenly complex

• add musical examples

• Syntax is pre-existing

• fast implementation

• toying with music

• language is intuitive

• simple and advanced

• Good at procedural melodies

• perfect for sound effects

• lots of ideas

• language is confusing

• can’t understand Haskell

• previous experience helpful

• difficult for new user

• Easy to express ideas

• Able to express ideas

• Browser implementation useful

• SuperCollider experience helpful

• musical ideas easy

• scale list good

• Has potential

• Need more time

• Learning curve is steep

• New way of thinking

• Felt capable of rhythm and melody

• Graphics didn’t work

• Didn’t use graphics

• Nothing to say about graphics

• Patterns and Graphics powerful

• Graphics made text unreadable

• Graphics fantastic

• useful for pedagogy

• Browser implementation is novel

• Hard to use graphics

• Prefer shaders to geometric shapes

• Graphics not bad

• Graphics most negative

• Demo too dense

• Multiple people frustrating

• Mute people useful

• Other users broke Lich

• Other users didn’t respond

• Split window confusing

• Couldn’t easily edit with other users

• Font color difficult to read

• Wanted VIM mode

• Demo too long

• Felt like tutorial, not demo

• Incorrect keybindings on mac

• Confused

• Live coding locked into beat based
music

• Collaborative features unclear

Appendix D. Quick Live Coding Collaboration in the Browser XXXVI

• Syntax is confusing

• Difficult to listen with collaborators

• Difficult to understand who produces
which sound

• Wanted native JS functionality

• Couldn’t figure out mouseX

• Function programming difficult

• Lacked OSC and FFT

• Preferred music to graphics

• Patterns and Chords easy

• Very Cool

• Functional Programming useful

• Sequencing inspiring

• Collaboration would be fun with ex-
perienced users

• Browser implementation easy

• Development speed was a joy

• Music, graphics, and networking to-
gether is excellent

• Patterns update next cycle

• Functionally flawless

• Creatively impressive

• Moment of stupidity

• Collaboration sometimes cool

• Immediate results

• Benefit from practice

• Easy to use

• Feature Rich

• Demo well made

• Collaboration potential mostly posi-
tive

• Chat is very nice

• Sync is precise

• Easy setup most positive

• Really fun

• Fast sound generation cool

• Motivational for live coding

• Sequencer and recording would be
useful

• A great language

• Never tried collaboration

• Impressed by functional programming

• Fun

• Built in synth would be nice

• Chat worked different than expected

• Wanted more info and examples

• Felt uncomfortable with other users
online

• Didn’t want to disturb other users

• GUI had minor problems

• Curious about scalability

• Shared editor might be better

• Wanted executed code flashing

• Great start

• Promising project

• Hope to see it used

• Would prefer voice communication
over chat

• Nothing useful for collaboration but
chat

• Unclear about collaborative features

• Interested in new features

• Difficult to learn

• Language is confusing (3?)

• Huge potential

• Spectacular set of ideas

• Will show to students

Appendix D. Quick Live Coding Collaboration in the Browser XXXVII

• Reminded of Gibber

• Wanted file playback

• Really liked it

• Didn’t collaborate, but wanted to

• Really liked it

• Interested in using Lich.js

• Interested in learning more

D.4 Lich.js Thematic Analysis Sub-Themes
• Lich.js is intuitive, fast, and easy

• Lich.js is unintuitive, slow, and difficult

• Lich.js is an instrument, requires practice, and can be played well or poorly

• Functional programming is foreign and difficult

• Functional programming is useful and powerful

• Previous computer music language experience is useful for learning Lich.js

• There is similarity to pre-existing systems

• The demo had too much overwhelming material

• The demo needed more material or was lacking

• The demo was well made

• Lich.js is a useful or potentially useful tool

• Browser based implementation is useful

• Lich.js is inspiring and is feature rich

• Lich.js is uninspiring and lacking functionality

• There is interest in the continuing development of Lich.js

• The graphics were not compelling and poorly implemented (much more dominant)

• The graphics were compelling (much less dominant)

• Collaboration was confusing, difficult, and poorly implemented

• Collaboration was frustrating, awkward or uncomfortable

• Collaboration would be compelling or useful, Given the right context

• Collaboration wasn’t interesting or never tried to collaborate

• Communication was difficult

• Chat was useful

• Chat was not useful

• Lich.js worked well technically

• Lich.js worked poorly technically

Appendix D. Quick Live Coding Collaboration in the Browser XXXVIII

D.5 Lich.js Thematic Analysis Major Themes
• Web based music systems are desirable

• Anonymous live coding collaboration using Lich.js is difficult and potentially unde-
sirable for some users

• The graphics implementation had several technical issues and many users were un-
interested in this functionality

• Despite technical issues, the novelty and utility of Lich.js is recognized

Certificate of Approval

Reference Number: ER/CM418/2

Title Of Project: Evaluation of Lich.js

Principal Investigator (PI): Nick Collins

Student: Chad McKinney

Collaborators:

Duration Of Approval: 1 month

Expected Start Date: 08-Jun-2014

Date Of Approval: 03-Jun-2014

Approval Expiry Date: 08-Jul-2014

Approved By: Richard de Visser

Name of Authorised Signatory: Richard de Visser

Date: 03-Jun-2014

*NB. If the actual project start date is delayed beyond 12 months of the expected start date, this Certificate of

Approval will lapse and the project will need to be reviewed again to take account of changed circumstances such

as legislation, sponsor requirements and University procedures.

Please note and follow the requirements for approved submissions:

Amendments to protocol

* Any changes or amendments to approved protocols must be submitted to the C-REC for authorisation prior

to implementation.

Feedback regarding the status and conduct of approved projects

* Any incidents with ethical implications that occur during the implementation of the project must be reported

immediately to the Chair of the C-REC.

Feedback regarding any adverse and unexpected events

* Any adverse (undesirable and unintended) and unexpected events that occur

during the implementation of the project must be reported to the Chair of the Social Sciences C-REC. In the

event of a serious adverse event, research must be stopped immediately and the Chair alerted within 24

hours of the occurrence.

For Life Sciences and Psychology projects

* The principal investigator is required to provide a brief annual written statement to the committee, indicating

the status and conduct of the approved project. These reports will be reviewed at the annual meeting of the

committee. A statement by the PI to the C-REC indicating the status and conduct of the approved project

will be required on the Approval Expiration Date as stated above.

3/6/2014 Page 1 of 1

Appendix D. Quick Live Coding Collaboration in the Browser XXXIX

D.6 Ethics Approval

Appendix D. Quick Live Coding Collaboration in the Browser XL

D.7 Lich and JavaScript Benchmark Test code

Appendix D. Quick Live Coding Collaboration in the Browser XLI

-- Fibonacci test code in Lich.js

let fib n = if n == 0 then 0 else if n == 1

then 1 else (fib (n - 1)) + (fib (n - 2))

-- Fibonacci test code in JavaScript

function jsFib(n) {

var s = 0;

if(n == 0) return(s);

if(n == 1) {

s += 1;

return(s);

} else {

return(jsFib(n - 1) + jsFib(n - 2));

}

}

}

-- Case test code in Lich.js

case "Zombie" of

"String" -> "String"

20.1 -> "20.1"

30 -> "30"

False -> "False"

_ -> "WildCard"

-- Case test code in JavaScript

function jsZombie () {

switch("Zombie") {

case "String": return "String";

case 20.1: return "20.1";

case 30: return "30";

case false: return "false";

default: return "WildCard";

}

}

-- Binary operator test code in Lich.js

let seven = 1 + 2 * 3

-- Binary operator test code in JavaScript

seven = 1 + 2 * 3

-- List test code in Lich.js

[1 ,9..9999]

-- List test code in JavaScript

function jsListRange () {

var res = [];

for(var i = 1; i < 9999; i+=9) {

res.push(i);

}

return res;

}

Figure D.1: Test code in Lich.js and JavaScript

Appendix D. Quick Live Coding Collaboration in the Browser XLII

41
%

41
%

24
%

18
% 0%

47
%

24
%

65
%

71
%

10
0%

12
%

35
%

12
%

12
%

0%

re
sp

on
se

I
w

ill
 u

se
 L

ic
h.

js
 in

 a
 f

ut
ur

e
pr

oj
ec

t

Th
e

br
ow

se
r

ba
se

d
im

pl
em

en
ta

ti
on

 is
 u

se
fu

l

It
 w

as
 d

if
fi

cu
lt

 t
o

co
m

m
un

ic
at

e
an

d
co

lla
bo

ra
te

I
qu

ic
kl

y
be

ca
m

e
sk

ill
fu

l w
it

h
Li

ch
.js

Li
ch

.js
 is

 u
se

fu
l f

or
 m

us
ic

 c
ol

la
bo

ra
ti

on

10
0

50
0

50
10

0

Pe
rc

en
ta

ge

R
es

p
on

se
1

2
3

4
5

6
7

Appendix D. Quick Live Coding Collaboration in the Browser XLIII

Figure D.2: Generative visuals created with Lich.js

